力扣 221. 最大正方形
题目描述:
在一个由 '0' 和 '1' 组成的二维矩阵内,找到只包含 '1' 的最大正方形,并返回其面积。
解析:
动态规划
1.dp[i][j]为存储到点(i,j)时以此为右下角的正方形个数
2.只有当前值为1时才可能构成正方形
3.在上面前提下,最左边和最右边都只能构成边长为1的正方形
4.边长多大还取决于其它三个点的值 所以这边取其最小值+1,有一个为0都不能扩大
Java:
class Solution {
public int maximalSquare(char[][] matrix) {
if(matrix == null || matrix.length == 0 || matrix[0].length == 0) {
return 0;
}
int m = matrix.length, n = matrix[0].length;
int[][] dp = new int[m][n];
int maxSqueue = 0;
for(int i = 0; i < m; i++) {
for(int j = 0; j < n; j++) {
if(matrix[i][j] == '1') {
if(i == 0 || j == 0) {
dp[i][j] = 1;
} else {
dp[i][j] = Math.min(dp[i][j-1], Math.min(dp[i - 1][j], dp[i-1][j-1])) + 1;
}
}
maxSqueue = Math.max(maxSqueue, dp[i][j]);
}
}
return maxSqueue * maxSqueue;
}
}
JavaScript:
var maximalSquare = function(matrix) {
if(matrix === null || matrix.length === 0 || matrix[0].length === 0) {
return 0;
}
let m = matrix.length, n = matrix[0].length;
let dp = Array(m + 1).fill(0).map(()=> Array(n + 1).fill(0));
let maxSqueue = 0;
for(let i = 0; i < m; i++) {
for(let j = 0; j < n; j++) {
if(matrix[i][j] == '1') {
if(i === 0 || j === 0) {
dp[i][j] = 1;
} else {
dp[i][j] = Math.min(dp[i][j-1], dp[i-1][j], dp[i-1][j-1]) + 1;
}
}
maxSqueue = Math.max(maxSqueue, dp[i][j]);
}
}
return maxSqueue * maxSqueue;
};