D - Two Divisors (素数筛)

题目

首先:对于gcd有
gcd(a,b)=gcd(a+b,b)
且若gcd(a,b)=1,
则gcd(a,c)=gcd(a,c*b)=gcd(a,c * b^n)
现有gcd(d1,d2)=1,->gcd(d1+d2,d1)=1,gcd(d1+d2,d2)=1
->gcd(d1+d2,d1 * d2)=1,->gcd(d1+d2,d1^n * d2^n)

现在再来看题目要我们求什么,我们只需找到ai的两个互质因数d1,d2 , ai=d1^ n * d2可得gcd(d1,d2)=1,由如上性质gcd(d1+d2,d1^n*d2)=1,即gcd(d1+d2,ai)=1。

在此我们用埃拉托色尼筛法在 O(NloglogN)求出1e7内每个数的第一个质因数d1,第二个与d1互质因数只需用ai当ai%d1==0时不断除d1即可求出,如果最终d2=1表示找不到两个互质因数,反则可以。

Code:

#include<iostream>
using namespace std;
typedef long long ll;
const int Max = 5e5 + 5;
int prim[Max*20], vis[Max*20], h[Max*20], x = 0;//h存储合数找到的第一个质因数
int a[Max], b[Max];
void eratos(int n)
{
   
	for (int i = 2;i <= n;i++)
	{
   
		if (!vis[i])prim[++x] = i;
		if (vis[i])continue;
		for (int j = 1;j * i <= n;j++)
		{
   
			if(j!=1)vis[i * j] = 1;
			h[i * j] = i;
		}
	}
}

int main()
{
   
	int n;cin >> n;
	eratos(1e7+3);
	for (int i = 1;i <= n;i++)
	{
   
		int p;cin >> p;
		if (vis[p] == 0)a[i] = -1, b[i] = -1;
		else
		{
   
			int k = h[p];
			while (p % k == 0)p /= k;
			if (p == 1)a[i] = -1, b[i] = -1;
			else a[i] = k, b[i] = p;
		}
	}
	for (int i = 1;i <= n;i++)cout << a[i] << " ";cout << endl;
	for (int i = 1;i <= n;i++)cout << b[i] << " ";
}

全部评论

相关推荐

2024-12-06 10:46
已编辑
上海大学 C#工程师
LHight:兄弟去偷配方回来
点赞 评论 收藏
分享
2024-12-07 17:42
佛山大学 销售工程师
亲切的长颈鹿又在摸鱼:找销售啊,算法机器人不是你这个学历能干的
点赞 评论 收藏
分享
评论
点赞
收藏
分享
牛客网
牛客企业服务