题解 | #跳台阶# 矩阵快速幂,O(logn) 复杂度
跳台阶
http://www.nowcoder.com/practice/8c82a5b80378478f9484d87d1c5f12a4
由于算法的限制只有 40,若如果数字远大,例如 target = 2^30 次,则可以用此法来解决。
public class Solution {
public int jumpFloor(int target) {
if (target <= 2) {
return target;
}
Matrix a = initMatrix();
a = Matrix.pow(a, target-2);
Matrix b = new Matrix(2, 1);
b.arr[0][0] = 2;
b.arr[1][0] = 1;
b = Matrix.mult(a, b);
return b.arr[0][0];
}
public Matrix initMatrix() {
Matrix matrix = new Matrix(2, 2);
matrix.arr[0][0] = 1;
matrix.arr[0][1] = 1;
matrix.arr[1][0] = 1;
return matrix;
}
}
class Matrix {
int m, n;
int[][] arr;
public Matrix(int m, int n) {
this.m = m;
this.n = n;
this.arr = new int[m][n];
}
public static Matrix mult(Matrix matrix1, Matrix matrix2) {
int m = matrix1.m, n = matrix2.n;
Matrix matrix = new Matrix(m, n);
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
for (int k = 0; k < matrix1.n; k++) {
matrix.arr[i][j] += matrix1.arr[i][k] * matrix2.arr[k][j];
}
}
}
return matrix;
}
public static Matrix pow(Matrix matrix, int n) {
Matrix x = matrix;
n -= 1;
while (n != 0) {
if ((n & 1) == 1) {
matrix = mult(x, matrix);
}
x = mult(x, x);
n >>= 1;
}
return matrix;
}
}