PyTorch:一篇使用技巧汇总

设定 tensor 默认的 dtype:torch.set_default_tensor_type(torch.DoubleTensor)

Pytorch 有八个类型:

Daya type dtype Tensor types
32-bit 浮点 torch.float32 or torch.float torch.*.FloatTensor
64-bit 浮点 torch.float64 or torch.double torch.*.DoubleTensor
16-bit 浮点 torch.float16 or torch.half torch.*.HalfTensor
8-bit 整型(无符号) torch.uint8 torch.*.ByteTensor
8-bit 整型(有符号) torch.int8 torch.*.CharTensor
16-bit 整型(有符号) torch.int16 or torch.short torch.*.ShortTensor
32-bit 整型(有符号) torch.int32 or torch.int torch.*.IntTensor
64-bit 整型(有符号) torch.int64 or torch.long torch.*.LongTensor

保存模型:

def save_checkpoint(model, optimizer, scheduler, save_path):
	# 如果还有其它变量想要保存,也可以添加
    torch.save({
   
        'model_state_dict': model.state_dict(),
        'optimizer_state_dict': optimizer.state_dict(),
        'scheduler_state_dict': scheduler.state_dict(),
    }, save_path)

# 加载模型
checkpoint = torch.load(pretrain_model_path)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
...

打印模型的梯度:

# 打印梯度
for name, parameters in model.named_parameters():
	print('{}\'s grad is:\n{}\n'.format(name, parameters.grad))

使用梯度衰减策略:

# 指数衰减
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
# 阶梯衰减
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=200, gamma=0.5)
# 自定义间隔衰减
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[400], gamma=0.5)

梯度截断:

def clip_gradient(optimizer, grad_clip):
    """ Clips gradients computed during backpropagation to avoid explosion of gradients. :param optimizer: optimizer with the gradients to be clipped :param grad_clip: clip value """
    for group in optimizer.param_groups:
        for param in group["params"]:
            if param.grad is not None:
                param.grad.data.clamp_(-grad_clip, grad_clip)

自定义激活函数示例:

class OutExp(nn.Module):
    def __init__(self):
        super(OutExp, self).__init__()

    def forward(self, x):
        x = -torch.exp(x)
        return x

修改模型某一层参数:nn.Parameter()

# 修改第 2 层的 bias(`layer` 是模型定义时给的名称)
model.layer[2].bias = nn.Parameter(torch.tensor([-0.01, -0.4], device=device, requires_grad=True))

模型参数初始化:

# 自定义权重初始化
def weight_init(m):
    if isinstance(m, nn.Linear):
        nn.init.xavier_uniform_(m.weight, gain=0.1)
        nn.init.constant_(m.bias, 0)
    # 也可以判断是否为 conv2d,使用相应的初始化方式
    elif isinstance(m, nn.Conv2d):
        nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
    # 是否为批归一化层
    elif isinstance(m, nn.BatchNorm2d):
        nn.init.constant_(m.weight, 1)
        nn.init.constant_(m.bias, 0)

# 模型应用函数
model.apply(weight_init)
智能之路 文章被收录于专栏

包括机器学习、神经网络、深度学习、强化学习各种方面的文章

全部评论

相关推荐

评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客企业服务