平淡无奇的笔记

暂且就先将所有笔记写在一篇博客上吧,等需要分类管理的时候再分成多个博客放到一个专题中。

目录

同时保留原始顺序与有序顺序的方法

分组问题

状态相关与无关(CF915C Permute Digits)

问题的有序无序性

答案的唯一性

鸽笼原理

如何做思维题?

思维过程

1. 自顶向下

2. 自底向上

贪心

双指针(CF279B Books)

 关于位运算

2. 异或的逆运算性质

3. 加法的位运算性质

 组合博弈

SG函数

Nim-sum(小博弈的并)

图论

几个建图方式:

快速傅里叶变换(FFT) 


1. 树状数组、线段树,ST表的应用场景:区间和、区间 gcd 、最大子段和 等 满足结合律支持快速合并

2. 能用vis数组尽量不用set,复杂度会加log且常数较大

同时保留原始顺序与有序顺序的方法

最近突然做到很多有关此类问题的题目,有必要分离出来讲。

CF1148C Crazy Diamond

1.对于问题有序且需要获取序列顺序信息的算法,可用结构体标记元素下标,相当于指向原位置,再对序列进行顺序变换即可,不会丢失原位置信息。(本质是排序)

2. 当序列为排列且元素范围较小时,还可用数组pre[i]=j表示数字i的原始位置为j,相当于指向原位置,相比于方法1的优点是通过元素值查询和更新的复杂度为O(1)(本质是计数)

分组问题

1. 01分组问题,经常考虑个数相同或不相同,这样想:n个0和1的配对,剩下要不是1要不是0,有m个,执行算法后01个数的和或差要满足什么条件,要使m=0需要怎么操作,等等(#741 (Div. 2)D1#740 (Div. 2, based on VK Cup 2021 - Final (Engine)B)。

2. 对数字分组,每组都不存在相同的数,可对序列排序,再间隔组数选数即可。(相同数字个数要少于组数)(CF1551B2 Wonderful Coloring - 2

3. 对数字分组,每组都是相同的数,可对序列排序,再连续选数即可。(CF1203B Equal Rectangles

状态相关与无关(CF915C Permute Digits

1. 当初考虑从左到右遍历b串,对每个位置从a中从大到小找到第一个小于等于这个位置上的数,错误在于当前选择的数(状态)会影响之后的选择,也就是说选了一个数字后后续的遍历就无法选择这个数字,称为状态相关。当且仅当后续的遍历不再需要考虑这个数字时算法正确,称为状态无关。

问题的有序无序性

1. 分析问题时发现序列的排列与答案无关,问题不涉及顺序,常考虑进行排序或对相同元素计数。 (CF706B Interesting drink

2. 分析问题时发现序列的排列与答案有关,问题涉及顺序,数据范围较小且不重复,可采用值与下标身份交换的存储方式,适合处理元素位置多次交换的问题,只需改变值,不需要改变位置(HDU 1394 Minimum Inversion Number

答案的唯一性

CF Global Round 15 Running for Gold

CF #736 (Div. 2) Web of Lies

善用反证法,容易证明某些题目的答案必须包含某个性质,从而只有一种可能。 

例1:观察到运动员获得金牌必须战胜所有运动员,存在战胜与被战胜的关系。假设有两个运动员得金牌,可知两个运动员互相战胜,矛盾说明只有一个运动员,或者获得金牌的运动员不存在。

例2:观察到点权小于所有所连点会被删除,假设有两个幸存者,可知两个幸存者的点权都不小于对方,即点权相等,与题意矛盾,所以只有一个幸存者。

鸽笼原理

Educational Codeforces Round 111 (Rated for Div. 2) C Manhattan Subarrays

when either ai≤aj≤ak or ai≥aj≥ak. In other words, subarray is bad if and only if it contains either non-decreasing subsequence of length 3&nbs***on-increasing subsequence of length 3.Any sequence of length at least 5 contains either non-decreasing or non-increasing subsequence of length 3.


贪心

1. 当优化答案对当前状态没有改变的时候,可以采取贪心。

2. 贪心可以无条件优化答案(CF520B Two Buttons


双指针(CF279B Books

限制条件的最长/最短连续子序列和。

ll p=1,len=0,maxlen=0,sum=0;
for(ll i=1; i<=n; ++i) {
  sum+=arr[i];
  ++len;
  while(sum>m) {
    sum-=arr[p];
    --len;
    ++p;
  }
  maxlen=max(len,maxlen);
}

 关于位运算

1. 异或运算相当于把1对应的被异或数位取反,0对应的被异或数位取反,例:

 0010 1101^0000 1111=0010 0010

2. 异或的逆运算性质

1. n^m=k -> n^k=m(#735 (Div. 2) C Mikasa

2. 判断序列中是否存在不成对的数:异或和=0,全部成对;异或和>0,存在不成对的数。

原理:a^a=0,a^b≠0 (a≠b) 

3. 加法的位运算性质

1. 加法在某一位上的变化为异或运算,在进位上的运算为后一位的与运算

2. 加法运算时,低位一旦出现0,高位不会发生变化,低位不出现0,高位会出现1


 组合博弈

1. 从至少一个N点能到达P点

2. 从P点只能到达N点

SG函数

SG值为不等于后继SG值的最小非负整数。

SG(x)=0 P点

SG(x)>0 N点

Nim-sum(小博弈的并)

对于nim游戏的某个位置(x1,x2,x3,...),当且仅当sg(x1)⊕sg(x2)⊕sg(x3)⊕...=0时(x1,x2,x3)为P点。

操作为,找到异或和最高位,三个对应位有几个1就有几种取法(保证取牌数为正)。

证:

终结位置(0,0,0)为P点。

任何P点只能到N点,任何不等于0的异或和都为N。

至少有一个N能到达P,不等于0的异或和,取xn改变其中几个位数使得异或和为0。


图论

几个建图方式:

1. 点、边方式

2. 出入度方式

拓扑排序:

1. 拓扑排序可以反向建图,拓扑顺序相反,不改变先决条件关系


快速傅里叶变换(FFT) 

自学:多项式、多项式点值表示法、点值表示法多项式乘积、复数乘法、单位根、单位根的幂和性质 

全部评论

相关推荐

比亚迪汽车新技术研究院 硬件工程师 总包21左右 硕士
点赞 评论 收藏
分享
冲芭芭拉鸭:你这图还挺新,偷了。
投递美团等公司10个岗位
点赞 评论 收藏
分享
挣K存W养DOG:他真的很中意你,为什么不回他
点赞 评论 收藏
分享
点赞 收藏 评论
分享
牛客网
牛客企业服务