十八万字整理C/C++、嵌入式软开 常见面试题汇总20
十八万字吐血整理的C/C++、嵌入式常见面试题!!!!
![](https://uploadfiles.nowcoder.com/files/20210904/510025937_1630762582721/v2-86e353bdd80c76cf0d63afcd23d0be57_720w.png)
文中很多资料避免不了从网上或是其他复习资料里收集整理,十分感谢前辈的辛勤付出,如果存在侵权请一定联系我进行删除。
系列文章PDF下载地址:《最全C_C++及嵌入式软开面试题宝典.pdf》
101、字节对齐有什么作用?
字节对齐的作用不仅是便于cpu快速访问,同时合理的利用字节对齐可以有效地节省存储空间。
编译器中提供了#pragma pack(n)来设定变量以n字节对齐方式。n字节对齐就是说变量存放的起始地址的偏移量有两种情况:第一、如果n大于等于该变量所占用的字节数,那么偏移量必须满足默认的对齐方式,第二、如果n小于该变量的类型所占用的字节数,那么偏移量为n的倍数,不用满足默认的对齐方式。
102、C语言中#pragma用法
1.#pragma message
#pragma message("消息文本") 当编译器遇到这条指令时,就在编译输出窗口中将消息文本打印出来。
2.#pragma code_seg
#pragma code_seg(["section-name"["section-class"]])
它能够设置程序中函数代码存放的代码段。当我们开发驱动程序时便就会使用到它。
3.#pragma once
只要在头文件的最开始加入这条指令就能够头文件被编译一次。
4.#pragma hdrstop
表示编译头文件到此为止,后面的头文件不进行预编译。
5.#pragma resouce
#pragma resouce"*.dfm"表示*.dfm文件中的资源加入工程。*.dfm中包括了外观定义。
6.#pragma warning
#pragma warning (disable:4507 34; once:4385; error:164) 等价于
#pragma warning (disable:4507 34) //不显示4507和30号警告信息
#pragma warning (once:4385) //4358号警告信息仅报告一次
#pragma warning (error:164) //把164号警告信息作为一种错误
7.#pragma comment
#pragma comment(...) 该指令将一个注释放入一个对象文件或可执行文件中,常用lib关键字帮我们链入一个库文件。
如:#pragma comment(lib,"user32.lib") 该指令用来将user32.lib库文件加入到本工程中。
8. #pragma pack
这条指令主要用作改变编译器的默认对齐方式。
103、new和malloc的区别?
1.new/delete是C++关键字,需要编译器支持。malloc/free是库函数,需要头文件支持;
2.使用new操作符申请内存分配时无须指定内存块的大小,编译器会根据类型信息自行计算。而malloc则需要显式地指出所需内存的尺寸。
3.new操作符内存分配成功时,返回的是对象类型的指针,类型严格与对象匹配,无须进行类型转换,故new是符合类型安全性的操作符。而malloc内存分配成功则是返回void * ,需要通过强制类型转换将void*指针转换成我们需要的类型。
4.new内存分配失败时,会抛出bac_alloc异常。malloc分配内存失败时返回NULL。
5.new会先调用operator new函数,申请足够的内存(通常底层使用malloc实现)。然后调用类型的构造函数,初始化成员变量,最后返回自定义类型指针。delete先调用析构函数,然后调用operator delete函数释放内存(通常底层使用free实现)。malloc/free是库函数,只能动态的申请和释放内存,无法强制要求其做自定义类型对象构造和析构工作。
104、malloc/calloc/realloc三者之间的区别?
1)void *malloc(size_t size);
size表示要分配的字节数,其中要检测空间是否开辟成功,开辟失败时返回0。
作用:在内存中分配一个元素被初始化为0的数组。
2)void *calloc(size_t num, size_t size);
num表示元素的个数,size表示每个元素的大小
返回值:返回一个指向所分配空间的void指针。
作用:重新分配内存块
3)void *realloc(void* memblock,size_t size);
memblock指向原先分配的内存块,size表示新的内存块的字节大小。
返回值:返回一个指向重新分配(可能移动了)的内存块的大小。
注意:堆上的内存需要用户自己来管理,动态malloc/calloc/realloc的空间,必须free掉,否则会造成内存泄漏
105、delete p;与delete[]p,allocator
1.动态数组管理new一个数组时,[]中必须是一个整数,但是不一定是常量整数,普通数组必须是一个常量整数;
2.new动态数组返回的并不是数组类型,而是一个元素类型的指针;
3.delete[]时,数组中的元素按逆序的顺序进行销毁;
4.new在内存分配上面有一些局限性,new的机制是将内存分配和对象构造组合在一起,同样的,delete也是将对象析构和内存释放组合在一起的。allocator将这两部分分开进行,allocator申请一部分内存,不进行初始化对象,只有当需要的时候才进行初始化操作。
106、new和delete的实现原理,delete是如何知道释放内存的大小?
1.new简单类型直接调用operator new分配内存;而对于复杂结构,先调用operator new分配内存,然后在分配的内存上调用构造函数;对于简单类型,new[]计算好大小后调用operator new;对于复杂数据结构,new[]先调用operator new[]分配内存,然后在p的前四个字节写入数组大小n,然后调用n次构造函数,针对复杂类型,new[]会额外存储数组大小;
- new表达式调用一个名为operator new(operator new[])函数,分配一块足够大的、原始的、未命名的内存空间;
- 编译器运行相应的构造函数以构造这些对象,并为其传入初始值;
- 对象被分配了空间并构造完成,返回一个指向该对象的指针。
2.delete简单数据类型默认只是调用free函数;复杂数据类型先调用析构函数再调用operator delete;针对简单类型,delete和delete[]等同。假设指针p指向new[]分配的内存。因为要4字节存储数组大小,实际分配的内存地址为[p-4],系统记录的也是这个地址。delete[]实际释放的就是p-4指向的内存。而delete会直接释放p指向的内存,这个内存根本没有被系统记录,所以会崩溃。
3.需要在 new [] 一个对象数组时,需要保存数组的维度,C++ 的做法是在分配数组空间时多分配了 4 个字节的大小,专门保存数组的大小,在 delete [] 时就可以取出这个保存的数,就知道了需要调用析构函数多少次了。
107、malloc申请的存储空间能用delete释放吗
不能,malloc /free主要为了兼容C,new和delete 完全可以取代malloc /free的。malloc /free的操作对象都是必须明确大小的。而且不能用在动态类上。new 和delete会自动进行类型检查和大小,malloc/free不能执行构造函数与析构函数,所以动态对象它是不行的。当然从理论上说使用malloc申请的内存是可以通过delete释放的。不过一般不这样写的。而且也不能保证每个C++的运行时都能正常。
108、函数参数入栈的顺序
- 大多数编译器中,参数是从右向左⼊栈(原因在于采⽤这种顺序,是为了让程序员在使⽤C/C++的“函数参数⻓度可变”这个特性时更⽅便。如果是从左向右压栈,第⼀个参数(即描述可变参数表各变量类型的那个参数)将被放在栈底,由于可变参的函数第⼀步就需要解析可变参数表的各参数类型,即第⼀步就需要得到上述参数,因此,将它放在栈底是很不方便的。)
- 本次函数调用结束时,局部变量先出栈,然后是参数,最后是栈顶指针最开始存放的地址,程序由该点继续运⾏,不会产生碎⽚。
109、堆和栈区别
1.管理方式:
- 栈由操作系统自动分配释放,无需我们手动控制,无需我们手工控制,⼀般保存的是局部变量和函数参数等。
- 堆由程序员管理,需要⼿动 new malloc delete free 进⾏分配和回收,如果不进⾏回收的话,会造成内存泄漏的问题。
2.空间大小:一般来讲在32位系统下,堆内存可以达到4G的空间,从这个角度来看堆内存几乎是没有什么限制的。但是对于栈来讲,一般都是有一定的空间大小的,例如,在VC6下面,默认的栈空间大小是1M(好像是,记不清楚了)。当然,我们可以修改: 打开工程,依次操作菜单如下:Project->Setting->Link,在Category 中选中Output,然后在Reserve中设定堆栈的最大值和commit。 注意:reserve最小值为4Byte;commit是保留在虚拟内存的页文件里面,它设置的较大会使栈开辟较大的值,可能增加内存的开销和启动时间。
3.碎片问题:对于堆来讲,频繁的new/delete势必会造成内存空间的不连续,从而造成大量的碎片,使程序效率降低。对于栈来讲,则不会存在这个问题,因为栈是先进后出的队列,他们是如此的一一对应,以至于永远都不可能有一个内存块从栈中间弹出,在他弹出之前,在他上面的后进的栈内容已经被弹出,详细的可以参考数据结构,这里我们就不再一一讨论了。
4.生长方向:
- 对于栈来讲,是连续的内存空间,它的生长方向是向下的,是向着内存地址减小的方向增长。比如在函数调⽤的时候,首先⼊栈的主函数的下⼀条可执⾏指令的地址,然后是函数的各个参数。
- 对于堆来讲,不连续的空间,实际上系统中有⼀个空闲链表,生长方向是向上的,也就是向着内存地址增加的方向,空间交⼤,较为灵活。
;当有程序申请的时候,系统遍历空闲链表找到第⼀个⼤于等于申请⼤⼩的空间分配给程序,⼀般在分配程序的时候,也会空间头部写⼊内存⼤⼩,⽅便 delete 回收空间⼤⼩。当然如果有剩余的,也会将剩余的插⼊到空闲链表中,这也是产⽣内存碎⽚的原因。
5.分配方式:堆都是动态分配的,没有静态分配的堆。栈有2种分配方式:静态分配和动态分配。静态分配是编译器完成的,比如局部变量的分配。动态分配由alloca函数进行分配,但是栈的动态分配和堆是不同的,它的动态分配是由编译器进行释放,无需我们手工实现。
6.分配效率:栈是机器系统提供的数据结构,计算机会在底层对栈提供支持:分配专门的寄存器存放栈的地址,压栈出栈都有专门的指令执行,这就决定了栈的效率比较高。堆则是C/C++函数库提供的,它的机制是很复杂的,例如为了分配一块内存,库函数会按照一定的算法(具体的算法可以参考数据结构/操作系统)在堆内存中搜索可用的足够大小的空间,如果没有足够大小的空间(可能是由于内存碎片太多),就有可能调用系统功能去增加程序数据段的内存空间,这样就有机会分到足够大小的内存,然后进行返回。显然,堆的效率比栈要低得多。
110、堆与栈的优点和缺点
1.堆的优缺点:堆得优点就是可以动态分配内存大小,生存期也不必告诉编译器,因为它是在运行中动态分配内存的;缺点就是由于是在运行时动态分配内存的,所以读取速度较慢。
目前已整理十万字的C/C++、嵌入式常见面试题!!!!还在持续更新中!!! 这个专栏写完了,再po上自己亲手敲的笔试编程题整理。