直方图中最大的矩形(遍历与单调栈)
给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。
求在该柱状图中,能够勾勒出来的矩形的最大面积。
以上是柱状图的示例,其中每个柱子的宽度为 1,给定的高度为 [2,1,5,6,2,3]。
图中阴影部分为所能勾勒出的最大矩形面积,其面积为 10 个单位。
示例:
输入: [2,1,5,6,2,3]
输出: 10
解法1:一种很好的优化方法,就是遍历数组,每找到一个局部峰值(只要当前的数字大于后面的一个数字,那么当前数字就看作一个局部峰值,跟前面的数字大小无关),然后向前遍历所有的值,算出共同的矩形面积,每次对比保留最大值。这里再说下为啥要从局部峰值处理,看题目中的例子,局部峰值为 2,6,3,我们只需在这些局部峰值出进行处理,为啥不用在非局部峰值处统计呢,这是因为非局部峰值处的情况,后面的局部峰值都可以包括,比如1和5,由于局部峰值6是高于1和5的,所有1和5能组成的矩形,到6这里都能组成,并且还可以加上6本身的一部分组成更大的矩形,那么就不用费力气去再统计一个1和5处能组成的矩形了。代码如下:
// Pruning optimize
class Solution {
public:
int largestRectangleArea(vector<int> &height) {
int res = 0;
for (int i = 0; i < height.size(); ++i) {
if (i + 1 < height.size() && height[i] <= height[i + 1]) {
continue;
}
int minH = height[i];
for (int j = i; j >= 0; --j) {
minH = min(minH, height[j]);
int area = minH * (i - j + 1);
res = max(res, area);
}
}
return res;
}
};
解法二:单调栈
后来又在网上发现一种比较流行的解法,是利用栈来解,可参见网友实验室小纸贴校外版的博客,但是经过仔细研究,其核心思想跟上面那种剪枝的方法有异曲同工之妙,这里维护一个栈,用来保存递增序列,相当于上面那种方法的找局部峰值。我们可以看到,直方图矩形面积要最大的话,需要尽可能的使得连续的矩形多,并且最低一块的高度要高。有点像木桶原理一样,总是最低的那块板子决定桶的装水量。那么既然需要用单调栈来做,首先要考虑到底用递增栈,还是用递减栈来做。我们想啊,递增栈是维护递增的顺序,当遇到小于栈顶元素的数就开始处理,而递减栈正好相反,维护递减的顺序,当遇到大于栈顶元素的数开始处理。那么根据这道题的特点,我们需要按从高板子到低板子的顺序处理,先处理最高的板子,宽度为1,然后再处理旁边矮一些的板子,此时长度为2,因为之前的高板子可组成矮板子的矩形 ,因此我们需要一个递增栈,当遇到大的数字直接进栈,而当遇到小于栈顶元素的数字时,就要取出栈顶元素进行处理了,那取出的顺序就是从高板子到矮板子了,于是乎遇到的较小的数字只是一个触发,表示现在需要开始计算矩形面积了,为了使得最后一块板子也被处理,这里用了个小 trick,在高度数组最后面加上一个0,这样原先的最后一个板子也可以被处理了。由于栈顶元素是矩形的高度,那么关键就是求出来宽度,那么跟之前那道 Trapping Rain Water 一样,单调栈中不能放高度,而是需要放坐标。由于我们先取出栈中最高的板子,那么就可以先算出长度为1的矩形面积了,然后再取下一个板子,此时根据矮板子的高度算长度为2的矩形面积,以此类推,知道数字大于栈顶元素为止,再次进栈,巧妙的一比!
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
int res = 0;
stack<int> st;
heights.push_back(0);
for (int i = 0; i < heights.size(); ++i) {
while (!st.empty() && heights[i] <= heights[st.top()]) {
int cur = st.top(); st.pop();
res = max(res, heights[cur] * (st.empty() ? i : (i - st.top() - 1)));
}
st.push(i);
}
return res;
}
};