<span>1001 害死人不偿命的(3n+1)猜想 (15 分)</span>

1001 害死人不偿命的(3n+1)猜想 (15 分)

卡拉兹(Callatz)猜想:

对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?
输入格式:

每个测试输入包含 1 个测试用例,即给出正整数 n 的值。
输出格式:

输出从 n 计算到 1 需要的步数。
输入样例:

3

输出样例:

5
#include <stdio.h>
int main() {
    int n, t=0;//n存储输入的数,t存储步数
    scanf("%d",&n);
    while(n != 1) {
        if(n % 2 == 0) {
            n = n / 2;
        }else{
             n = (3 * n + 1) / 2;
        }
        t++;
    }
    printf("%d",t);
    return 0;
}
全部评论

相关推荐

投递华为等公司10个岗位
点赞 评论 收藏
分享
评论
点赞
收藏
分享
牛客网
牛客企业服务