【学习笔记】集成学习(六):Boosting

Datawhale组队学习第27期:集成学习
本次学习的指导老师萌弟教学视频
本贴为学习记录帖,有任何问题欢迎随时交流~
部分内容可能还不完整,后期随着知识积累逐步完善。
开始时间:2021年7月23日
最新更新:2021年7月28日(Task6 Boosting)

一、知识补充:PAC学习

1. 概念

  • PAC:可能近似正确,即:Probably Approximate Correct

  • 能否从假设空间 H \mathcal{H} H中学习一个好的假设 h h h。(只关心能不能找到)

  • 两个条件(PAC辨识条件):

    • 近似正确:足够小的泛化误差
    • 可能正确:给定一个 δ \delta δ,存在一个假设 h h h满足 P ( h 近 似 正 确 ) ≥ 1 − δ P(h近似正确)\ge 1 - \delta P(h)1δ
    • 满足以上两个条件,称为PAC可学习
  • 模型在短时间利用多项式级别(少量)的样本找到一个假设 h ′ h' h满足:
    P ( E ( h ′ ) ≤ ϵ ) ≥ 1 − δ , 其 中 0 < ϵ 且 δ < 1 P(E(h') \le \epsilon) \ge 1 - \delta,其中0<\epsilon且\delta < 1 P(E(h)ϵ)1δ0<ϵδ<1

  • 特性:

    • 不依赖于分布
    • 样本来自于同一分布

2. Hoeffding不等式

  • 一群独立的随机变量 X 1 , . . . X n ∈ R X_1,...X_n \in \R X1,...XnR,随机变量有限个且 a i < X i < b i a_i < X_i < b_i ai<Xi<bi,记 S n = ∑ i = 1 n X i S_n = \sum\limits_{i=1}^{n}X_i Sn=i=1nXi,则有:
    P ( ∣ S n − E ( S n ) ∣ ≥ t ) ≤ 2 ⋅ e x p { − 2 t 2 ∑ i = 1 n ( b i − a i ) 2 } P(|S_n - E(S_n)|\ge t) \le 2 \cdot exp\{- \frac{2t^2} {\sum\limits_{i=1}^{n}(b_i - a_i)^2} \} P(SnE(Sn)t)2exp{ i=1n(biai)22t2}

  • 机器学习中,对于随机变量 x i x_i xi,有 x ˉ = 1 n ∑ i = 1 n x i \bar x = \frac{1}{n}\sum\limits_{i=1}^{n}x_i xˉ=n1i=1nxi,即 n x ˉ = ∑ i = 1 n x i n \bar x = \sum\limits_{i=1}^{n}x_i nxˉ=i=1nxi,则有:
    P ( ( x ˉ − E ( x ˉ ) ) ≥ t ) ≤ e x p { − 2 n t 2 } P((\bar x - E(\bar x))\ge t) \le exp\{-2nt^2\} P((xˉE(xˉ))t)exp{ 2nt2}

    P ( ∣ v − μ ∣ > ϵ ) < 2 ⋅ e x p { − 2 ϵ 2 N } P(|v - \mu|>\epsilon) < 2\cdot exp\{-2\epsilon^2N\} P(vμ>ϵ)<2exp{ 2ϵ2N}

    其中, v v v是采样计算的经验误差, μ \mu μ是期望的真实误差, N N N是采样数量。

  • 由泛化误差 E ( h ) E(h) E(h)和经验误差 E ^ ( h ) \hat E(h) E^(h)可知, E ( E ^ ( h ) ) = E ( h ) E(\hat E(h)) = E(h) E(E^(h))=E(h),因此有:
    ∀ h ∈ H     P ( ∣ E ( h ) − E ^ ( h ) ∣ ≥ ϵ ) ≤ 2 ⋅ e x p { − 2 n ϵ 2 } \forall h \in \mathcal{H} \ \ \ P(|E(h) - \hat E(h)|\ge \epsilon) \le2 \cdot exp\{-2n\epsilon^2 \} hH   P(E(h)E^(h)ϵ)2exp{ 2nϵ2}

    • 进一步,可以得到:

          P ( ∀ h ∈ H : ∣ E ( h ) − E ^ ( h ) ∣ ≤ ϵ ) = 1 − P ( ∃ h ∈ H : ∣ E ( h ) − E ^ ( h ) ∣ ≥ ϵ ) = 1 − p ( ( ∣ E ( h 1 ) − E ^ ( h 1 ) ∣ ≥ ϵ ) ∨ . . . ∨ ( ∣ E ( h ∣ H ∣ ) − E ^ ( h ∣ H ∣ ∣ ) ≥ ϵ ) ) ≥ 1 − ∑ i = 1 ∣ H ∣ P ( ∣ E ( h i ) − E ^ ( h i ) ∣ ≥ ϵ ) ≥ 1 − 2 ∣ H ∣ e x p { − 2 n ϵ 2 } \begin{aligned} &\ \ \ \ \ P(\forall h \in \mathcal{H}: |E(h) - \hat E(h)|\le \epsilon) \\ &= 1 - P(\exist h \in \mathcal{H}: |E(h) - \hat E(h)| \ge \epsilon)\\ &=1 - p((|E(h_1) - \hat E(h_1)| \ge \epsilon) \vee... \vee(|E(h_{|\mathcal{H}|}) - \hat E(h_{|\mathcal{H}|}|) \ge \epsilon)) \\ &\ge 1 - \sum\limits_{i=1}^{|\mathcal{H}|} P(|E(h_i) - \hat E(h_i)|\ge\epsilon) \\ &\ge 1 - 2|\mathcal{H}|exp\{-2n\epsilon^2 \} \end{aligned}      P(hH:E(h)E^(h)ϵ)=1P(hH:E(h)E^(h)ϵ)=1p((E(h1)E^(h1)ϵ)...(E(hH)E^(hH)ϵ))1i=1HP(E(hi)E^(hi)ϵ)12Hexp{ 2nϵ2}

  • 从上述不等式可以看出, ∣ E ( h ) − E ^ ( h ) ∣ |E(h)-\hat E(h)| E(h)E^(h)小于给定的误差发生的可能性的下界与假设空间 H \mathcal{H} H样本量 n n n有关。

    • 当样本量足够大或假设空间足够小时,可以保证学习到的假设 h ′ h' h的泛化误差与经验误差足够接近。

    • 当样本量小且假设空间很大(模型越复杂)时,训练的表现 E ( h ) E(h) E(h)与真实样本的表现 E ^ ( h ) \hat E(h) E^(h)相差较大,即过拟合。

3. PAC可学习条件

P ( E ( h ′ ) ≤ ϵ ) ≥ 1 − δ , 其 中 0 < ϵ 且 δ < 1 P(E(h') \le \epsilon) \ge 1 - \delta,其中0<\epsilon且\delta < 1 P(E(h)ϵ)1δ0<ϵδ<1

  • 样本量满足条件: n > M = ln ⁡ 2 ∣ H ∣ δ 2 ϵ 2 n > M = \frac{\ln\frac{2|\mathcal{H}|}{\delta}}{2\epsilon^2} n>M=2ϵ2lnδ2H,其中误差为:
    δ = 2 ∣ H ∣ e x p { − 2 n ϵ 2 } \begin{aligned} \delta &= 2|\mathcal{H}|exp\{-2n\epsilon^2 \} \\ \end{aligned} δ=2Hexp{ 2nϵ2}

二、Boosting概念

1. 思想

  • 对同一组数据集反复学习
  • 通过减少偏差的形式来降低测试误差(与Bagging的本质区别)

2. 常见模型

  • AdaBoosting
  • GradientBoosting
  • Xgboost
  • LightGBM
  • Catboost

3. 理论来源

  • 强可学习弱可学习
    • 弱学习:识别错误率小于1/2,准确率略高于随机猜测
    • 强学习:识别准确率很高,并能在多项式时间内完成的学习算法
  • PAC学习框架下,强可学习和弱可学习是等价的。
    • 意味着如果发现了弱可学习算法,可以通过提升方法使得学习增强
    • 大多数boosting都是改变训练数据集的概率分布(训练数据不同样本的权值),针对不同概率分布的数据调用弱分类算法学习一系列的弱分类器。
  • 需要回答两个关键问题:
    • 每一轮学习如何改变数据的概率分布
    • 各个弱分类器如何组合

4. 精度分析

推导

  • 设定基模型为 f f f,通过给定样本 X X X,每轮训练一个模型,再根据错误率进行bootstrap抽样(非均匀),训练出m个模型。

  • 最终模型是m个子模型的线性组合,记为 F = ∑ i = 1 m r i f i F = \sum\limits_{i=1}^{m}r_if_i F=i=1mrifi,其中 r i r_i ri为第 i i i个模型的权重系数

  • f f f训练的样本来自总体 X X X,可以记 E ( f i ) = μ E(f_i)=\mu E(fi)=μ V a r ( f i ) = σ 2 Var(f_i) = \sigma^2 Var(fi)=σ2
    E ( F ) = E ( ∑ i = 1 m r i f i ) = ∑ i = 1 m r i E ( f i ) V a r ( F ) = V a r ( ∑ i = 1 m r i f i ) = ∑ i = 1 m V a r ( r i f i ) + ∑ i ≠ j m c o v ( r i f i , r j f j ) = ∑ i = 1 m r i 2 V a r ( f i ) + ∑ i ≠ j m ρ i j r i r j V a r ( f i ) V a r ( f j ) \begin{aligned} E(F) &= E(\sum\limits_{i=1}^{m}r_if_i) \\ &= \sum\limits_{i=1}^{m}r_iE(f_i) \\ Var(F) &= Var(\sum\limits_{i=1}^{m}r_if_i) \\ &= \sum\limits_{i=1}^{m}Var(r_if_i) + \sum\limits_{i \ne j}^{m}cov(r_if_i, r_jf_j) \\ &= \sum\limits_{i=1}^{m}r_i^2Var(f_i) + \sum\limits_{i \ne j}^{m}\rho_{ij}r_ir_j\sqrt{Var(f_i)}\sqrt{Var(f_j)} \\ \end{aligned} E(F)Var(F)=E(i=1mrifi)=i=1mriE(fi)=Var(i=1mrifi)=i=1mVar(rifi)+i=jmcov(rifi,rjfj)=i=1mri2Var(fi)+i=jmρijrirjVar(fi) Var(fj)

  • 由bootstrap采样可知每个子模型仍是近似同方差,但期望会因为样本选取的权重发生变化(bagging是均匀采样,因此子模型的均值和方差是近似的)。因此有:
    E ( F ) = ∑ i = 1 m r i E ( f i ) V a r ( F ) = ∑ i = 1 m r i 2 V a r ( f i ) + ∑ i ≠ j m ρ i j r i r j V a r ( f i ) V a r ( f j ) = σ 2 ∑ i = 1 m r i 2 + σ 2 ∑ i ≠ j m ρ i j r i r j ≈ σ 2 ∑ i = 1 m r i 2 + σ 2 ∑ i ≠ j m r i r j = σ 2 ∑ i = 1 m ∑ j = 1 m r i r j \begin{aligned} E(F) &= \sum\limits_{i=1}^{m}r_iE(f_i) \\ Var(F) &= \sum\limits_{i=1}^{m}r_i^2Var(f_i) + \sum\limits_{i \ne j}^{m}\rho_{ij}r_ir_j\sqrt{Var(f_i)}\sqrt{Var(f_j)} \\ &= \sigma^2 \sum\limits_{i=1}^{m}r_i^2 + \sigma^2\sum\limits_{i \ne j}^{m}\rho_{ij}r_ir_j \\ &\approx \sigma^2 \sum\limits_{i=1}^{m}r_i^2 + \sigma^2\sum\limits_{i \ne j}^{m}r_ir_j \\ &= \sigma^2 \sum\limits_{i=1}^{m}\sum\limits_{j=1}^{m}r_ir_j \end{aligned} E(F)Var(F)=i=1mriE(fi)=i=1mri2Var(fi)+i=jmρijrirjVar(fi) Var(fj) =σ2i=1mri2+σ2i=jmρijrirjσ2i=1mri2+σ2i=jmrirj=σ2i=1mj=1mrirj

基于偏差与方差理论分析

  • Boosting模型是在基模型训练完后是使用线性组合来融合模型,显然每轮抽取的bootstrap样本是跟前面的样本有联系(按错误率修改了抽样权值),样本与样本之间的相关关系 ρ i j \rho_{ij} ρij会接近于1,同时各个子模型的权值之和 ∑ i = 1 m r i ≈ 1 \sum\limits_{i=1}^{m}r_i \approx 1 i=1mri1

[ E ( F ) E ( f ) ] 2 = [ ∑ i = 1 m r i E ( f i ) μ ] 2 [ E ( F ) − E ( f ) ] 2 = [ μ − ∑ i = 1 m r i E ( f i ) ] 2 V a r ( F ) V a r ( f ) = ∑ i = 1 m ∑ j = 1 m r i r j ≈ 1 V a r ( F ) − V a r ( f ) = ( 1 − ∑ i = 1 m ∑ j = 1 m r i r j ) σ 2 ≈ 0 \begin{aligned} {[\frac{E(F)}{E(f)}]^2} &= [\sum\limits_{i=1}^{m}r_i \frac{E(f_i)}{\mu}]^2 \\ [E(F) - E(f)]^2 &= [\mu - \sum\limits_{i=1}^{m}r_iE(f_i)]^2 \\ \frac{Var(F)}{Var(f)} &= \sum\limits_{i=1}^{m}\sum\limits_{j=1}^{m}r_ir_j \approx 1 \\ Var(F)-Var(f) &= (1 - \sum\limits_{i=1}^{m}\sum\limits_{j=1}^{m}r_ir_j)\sigma^2 \approx 0 \\ \end{aligned} [E(f)E(F)]2[E(F)E(f)]2Var(f)Var(F)Var(F)Var(f)=[i=1mriμE(fi)]2=[μi=1mriE(fi)]2=i=1mj=1mrirj1=(1i=1mj=1mrirj)σ20

  • 从推导式子可以发现,组合模型与基模型的 V a r Var Var​​​​​是十分接近的,主要发生变动的是模型的 B i a s Bias Bias​​​方面。从Boosting模型生成步骤来看,每个子模型的都是由上一次的子模型迭代所得,类似于梯度下降法不断迭代到极小值,从而减小 B i a s Bias Bias

基模型的选择

  • 从上述推导可以发现,Boosting模型主要改变的是整体模型的 B i a s Bias Bias​​​​,而组合模型的 V a r Var Var​​​​大致与基模型的 V a r Var Var​​​​相当,因此Boosting对基模型选择的是弱模型(高 B i a s Bias Bias V a r Var Var模型),通过提高分类错误的样本被选中的概率(分布),不断迭代训练子模型来降低 B i a s Bias Bias来提高模型的精度。

三、Adaboost

1. 基本思想

  • 提高前一轮分类器错误分类样本的权重,降低正确分类样本的权重
  • 各个弱分类器采用加权表决的方式组合
  • Adaboost实际上是增加了模型的复杂度,减少了偏差

2. 基本步骤

  • 训练器的权重初始化

  • 训练多个分类器模型,计算训练集的分类误差率(分类错误加起来)

  • 计算分类器在总模型的重要性

  • 更新训练数据集的权重分布

    • 注意: Z m Z_m Zm是规范化因子,使得 D m + 1 D_{m+1} Dm+1称为概率分布
  • 构建基本分类器的线性组合,得到最终分类器

3. 代码实现

  • 选用数据集diabetes,二分类问题
  • 定义弱分类器,单层决策树
# 定义单层决策树算法(弱分类器)
class DecisionStump:
    def __init__(self, x, y):
        self.x = np.array(x)
        self.y = np.array(y)
        self.n = self.x.shape[0]  # 样本量n
        self.w = None  # 权重初始化
        self.threshold_value = 0  # 阈值初始化
        self.threshold_pos = 0  # 参数下标初始化
        self.threshold_res = 0  # 取值初始化

    def train(self, w, steps=1000):
        """ 用于返回所有参数中阈值最小的那一个 w 是长度为n的向量,表示n个样本的权值 threshold_value 为阈值 threshold_pos 为第几个参数(参数下标) threshold_tag 取值空间为{-1, +1},大于阈值则分为某个threshold_tag,小于则相反(这里的如果相等?) """
        min_ = float("inf")  # 最小值初始化为无穷大inf
        # 注意区分与__init__函数self的属性区别
        threshold_value = 0
        threshold_pos = 0
        threshold_tag = 0
        self.w = np.array(w)  # 更新权重值,并将实际w转成ndarray类型

        # 分别以m个属性中的任意一个建立单层决策树
        for i in range(self.n):
            # value表示阈值,errcnt 表示错误的数量
            # 找到当前参数下最小的阈值(当前属性下决策树错误率最低)
            value, errcnt = self.findmin(i, 1, steps)  # 找最小值
            if errcnt < min_:
                min_ = errcnt
                threshold_value = value
                threshold_pos = i
                threshold_tag = 1

        # 对self属性值进行更新
        self.threshold_value = threshold_value
        self.threshold_pos = threshold_pos
        self.threshold_res = threshold_tag
        print(self.threshold_value, self.threshold_pos, self.threshold_res)

        return min_

    # 找出第i个参数的最小阈值,tag为1或-1
    def findmin(self, i, tag, steps):
        t = 0

        # 测试当前阈值情况下的预测能力(这里并没有作用,可以视为创建空间或初始化)
        tmp = self.predintrain(self.x, i, t, tag).transpose()
        errcnt = np.sum((tmp != self.y) * self.w)  # 计算当前阈值下错误的个数

        # 定义上下界(表示从第i个变量中最小值和最大值直接寻找阈值)
        bottom = np.min(self.x[i, :])  # 该属性下的最小值,即下界
        up = np.max(self.x[i, :])  # 该属性下的最大值,即上界

        # 初始化
        minerr = float("inf")  # 初始化错误的数量minerr为无穷大
        value = 0  # 初始化阈值为0
        st = (up - bottom) / steps  # 表示间隔

        # 寻找最小阈值value和分类误差率minerr
        for t in np.arange(bottom, up, st):
            tmp = self.predintrain(self.x, i, t, tag).transpose()  # 转置成(1,测试集样本量)
            errcnt = np.sum((tmp != self.y) * self.w)  # 返回分类误差率e_m
            if errcnt < minerr:
                minerr = errcnt
                value = t
        return value, minerr

    # 返回训练时按照阈值为t时预测的结果
    def predintrain(self, test_set, i, t, tag):
        # 测试集是(变量数, 样本量)的结构
        # 将测试集转成矩阵行数与样本量一致的数组
        test_set = np.array(test_set).reshape(self.n, -1)

        # 生成矩阵行数与测试集列数一致的且值为1的数组(这里测试集列数是测试集样本量)
        pre_y = np.ones((np.array(test_set).shape[1], 1))

        # 表示选择第i行(第i个变量)的数据,如果小于阈值t,则修改对应值为-1
        # 将对每个预测值进行判断,小于阈值的取-1,返回pre_y是(测试集样本量, 1)的结构
        pre_y[test_set[i, :] * tag < t * tag] = -1
        return pre_y

    # 弱分类器进行预测
    def pred(self, test_x):
        # 测试集转成行数与样本量一致的二维数组结构
        test_x = np.array(test_x).reshape(self.n, -1)
        pre_y = np.ones((np.array(test_x).shape[1], 1))  # 生成行数与样本量一致且值为1的二维数组
        pre_y[test_x[self.threshold_pos, :] * self.threshold_res <
              self.threshold_value * self.threshold_res] = -1
        return pre_y
  • 定义Adaboost
class AdaBoost:
    def __init__(self, x, y, weaker=DecisionStump):
        # 本函数用于初始化变量及参数
        # 初始化数据集(需要将训练集转成ndarray类型,这里本身已经是)
        self.x = np.array(x)
        self.y = np.array(y).flatten("F")  # flatten降至一维,这里没有用,F表示按列展开,原代码的有问题

        # 初始化分类器
        self.weaker = weaker

        # 初始化得分,计算组合分类器的预测得分总和
        self.sums = np.zeros(self.y.shape)  # 初始化与y.shape一样维度的零矩阵

        # 初始化权值w
        # 这里np.ones是根据样本量生成一个结构为(n,1)、值为1的二维数组,并降维到(n,)的一维数组
        # 生成的值皆为1的一维数组后,对每一个值除以样本量n(利用numpy的广播机制)
        # 最后得到的w的每个值都为1/n,即权重初始化是均匀分布的
        # self.w = np.ones((self.x.shape[1], 1)).flatten("F") / self.x.shape[1]
        self.w = np.ones(self.x.shape[1]) / self.x.shape[1]  # 效果同上,这里是简化代码

        # 初始化弱分类器
        self.q = 0  # 初始化弱分类器的实际个数
        self.g = {
   }  # 初始化所弱分类器的字典(原代码train函数中的放到此处)
        self.alpha = {
   }  # 初始化每个弱分类器的参数

    def train(self, m=5):
        # 给每个弱分类器的字典赋予默认key和默认value
        # g = {i: None, ...} , alpha = {i: None, ...}
        for i in range(m):
            self.g.setdefault(i)
            self.alpha.setdefault(i)

        for i in range(m):
            self.g[i] = self.weaker(self.x, self.y)
            # 根据当前权值进行第i个弱分类器训练,g[i]是weaker,因此train是weaker的方法
            # 默认权重是均匀分布的,即权值都是1/n
            e = self.g[i].train(self.w)

            # 计算第i个分类器的系数(权重)
            self.alpha[i] = 1.0 / 2 * 2 * np.log((1 - e) / e)
            res = self.g[i].pred(self.x)  # res返回的是第i个分类器的输出(重点判断误分类)

            # 计算当前次数训练的精确度
            print("weak classfier acc", accuracy_score(self.y, res))
            print("======================================================")

            # 规范化因子
            z = self.w * np.exp(-self.alpha[i] * self.y * res.transpose())  # 不一样
            self.w = (z / z.sum()).flatten("F")  # 更新权值
            self.q = i

            # errorcnt返回分错的点数,当为0时表示没有分错
            if self.errorcnt(i) == 0:
                print("%d个弱分类器可以将错误率降到0" % (i + 1))
                break

    # 返回误分类的点
    def errorcnt(self, t):
        # 计算组合分类器的得分总和
        self.sums = self.sums + self.g[t].pred(self.x).flatten('F') * self.alpha[t]
        pre_y = np.zeros(np.array(self.sums).shape)
        pre_y[self.sums >= 0] = 1
        pre_y[self.sums < 0] = -1
        t = (pre_y != self.y).sum()
        return t

    # 模型预测(最终的分类器)
    def pred(self, test_x):
        test_x = np.array(test_x)
        sums = np.zeros(test_x.shape[1])
        for i in range(self.q + 1):
            sums = sums + self.g[i].pred(test_x).flatten("F") * self.alpha[i]
        pre_y = np.zeros(np.array(sums).shape)
        pre_y[sums >= 0] = 1
        pre_y[sums < 0] = -1
        return pre_y
  • 主程序调用
 # 加载训练集和测试集
 data_set = pd.read_csv('diabetes.csv')
 x = data_set.values[:, :8]
 y = data_set.values[:, 8]

 # 划分数据集
 # test_size测试集样本比例; random_state随机种子
 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2,
                                                     random_state=0)

 # 数组变换,方便矩阵运算;简化算法,修改y的取值空间为{-1,+1}
 x_train = x_train.transpose()
 y_train[y_train == 1] = 1
 y_train[y_train == 0] = -1
 x_test = x_test.transpose()
 y_test[y_test == 1] = 1
 y_test[y_test == 0] = -1

 # 模型训练
 print(x_train.shape, x_test.shape)
 ada = AdaBoost(x_train, y_train)  # 放进训练集的x和y,默认为弱分类器weak
 ada.train(10)  # 设置弱分类器的数量为10

 # 模型预测
 y_pre = ada.pred(x_test)
 print("total test", len(y_pre))
 print('true pred', len(y_pre[y_pre == y_test]))
 print('acc', accuracy_score(y_test, y_pre))

四、参考资料

  1. https://github.com/datawhalechina/ensemble-learning
  2. https://www.bilibili.com/video/BV1Mb4y1o7ck?t=470
  3. https://zhuanlan.zhihu.com/p/30965398
  4. https://zhuanlan.zhihu.com/p/248624832
全部评论

相关推荐

野猪不是猪🐗:是我导致的,我前天对力扣进行了跨站脚本攻击,网站把我的请求给block了(胡言乱语)
点赞 评论 收藏
分享
雨夜迈巴赫:哪个厂呀
点赞 评论 收藏
分享
评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客企业服务