经典动态规划:背包问题-(LC322)
题目:
给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。
你可以认为每种硬币的数量是无限的。
题解:
我们采用自下而上的方式进行思考。仍定义 F(i) 为组成金额 i 所需最少的硬币数量,假设在计算 F(i) 之前,我们已经计算出 F(0)−F(i−1) 的答案。
c_j 代表的是第 j 枚硬币的面值,即我们枚举最后一枚硬币面额是 c_j ,那么需要从 i-c 这个金额的状态 F(i-c_j) 转移过来,再算上枚举的这枚硬币数量 1 的贡献,由于要硬币数量最少,所以 F(i) 为前面能转移过来的状态的最小值加上枚举的硬币数量 1 。
public class Solution {
public int coinChange(int[] coins, int amount) {
int max = amount + 1;
int[] dp = new int[amount + 1];
Arrays.fill(dp, max);//将数组dp全部填充为max值
dp[0] = 0;
for (int i = 1; i <= amount; i++) {
for (int j = 0; j < coins.length; j++) {
if (coins[j] <= i) {
dp[i] = Math.min(dp[i], dp[i - coins[j]] + 1);
}
}
}
return dp[amount] > amount ? -1 : dp[amount];
}
}
来源:力扣(LeetCode)