【计算几何】半平面交
半平面交算法
对于平面上的所有有向边(角度范围)
- 将向量按照角度排序(
atan2(y,x)
) - 按顺序扫描所有向量,用双端队列维护双平面交轮廓
- 只要队尾的两个线和队头的两个线的交点在当前直线的右侧(因为保存左侧),将队尾或者队头删除
- 用直线的参数方程存储直线
- 时间复杂度
int cnt; struct Line{ PDD st,ed; }line[N]; int q[N]; PDD pg[N],ans[N]; int sign(double x){ if (fabs(x) < eps) return 0; if (x < 0) return -1; return 1; } int dcmp(double a,double b){ if (fabs(a - b) < eps) return 0; if (a < b) return -1; return 1; } double get_angle(const Line& a){ return atan2(a.ed.y - a.st.y,a.ed.x - a.st.x); } PDD operator - (PDD a,PDD b){ return {a.x - b.x,a.y - b.y}; } double cross(PDD a,PDD b){ return a.x * b.y - a.y * b.x; } double area(PDD a,PDD b,PDD c){ return cross(b - a,c - a); } bool cmp(const Line& a,const Line& b){ double A = get_angle(a), B = get_angle(b); if (!dcmp(A,B)) return sign(area(a.st,a.ed,b.ed)) < 0; return A < B; } PDD get_line_intersection(PDD p,PDD v,PDD q,PDD w){ auto u = p - q; double t = cross(w,u) / cross(v,w); return {p.x + v.x * t,p.y + v.y * t}; } PDD get_line_intersection(Line a,Line b){ return get_line_intersection(a.st,a.ed - a.st,b.st,b.ed - b.st); } bool on_right(Line& a,Line& b,Line& c){ auto o = get_line_intersection(b,c); return sign(area(a.st,a.ed,o)) <= 0; } double half_plane_intersection(){ sort(line,line + cnt,cmp); int head = 0,tail = -1; for (int i = 0;i < cnt;++i){ if (i && !dcmp(get_angle(line[i]),get_angle(line[i-1]))) continue; while (head + 1 <= tail && on_right(line[i],line[q[tail - 1]],line[q[tail]])) tail--; while (head + 1 <= tail && on_right(line[i],line[q[head]],line[q[head + 1]])) head++; q[++tail] = i; } while (head + 1 <= tail && on_right(line[q[head]],line[q[tail - 1]],line[q[tail]])) tail--; while (head + 1 <= tail && on_right(line[q[tail]],line[q[head]],line[q[head + 1]])) head++; }