题解 | #Alice and Bob#
Alice and Bob
https://ac.nowcoder.com/acm/contest/11166/A
主要是看数据太小了,然后先把所以应该输出B的数据打印到文件中,再cccv即可
(如果不是实在找不出规律谁用这个办法呢?doge)
打表代码如下:
#include <bits/stdc++.h> #define int long long #define il inline #define re register using namespace std; const int N = 1e6 + 10; int t; char vis[5050][5050]; int f[5050][5050]; signed main() { ios::sync_with_stdio(false); cin.tie(0); for(int i = 1; i <= 5000; i++) { vis[i][0] = 'A'; vis[0][i] = 'A'; } for(int i = 1; i <= 5000; i++) { for(int j = 1; j <= 5000; j++) { if(i % j == 0 || j % i == 0) { vis[i][j] = 'A'; continue; } else { int flag = 0; for(int k = 1; k <= i; k++) { for(int h = 0; k * h <= j; h++) { if(vis[i - k][j - k * h] == 'B') { flag = 1; break; } } if(flag) break; } for(int k = 1; k <= j; k++) { for(int h = 0; k * h <= i; h++) { if(vis[j - k][i - k * h] == 'B') { flag = 1; break; } } if(flag) break; } if(flag) { vis[i][j] = 'A'; vis[j][i] = 'A'; } else { vis[i][j] = 'B'; vis[j][i] = 'B'; } } } } freopen("ans.txt", "w", stdout); for(int i = 2; i <= 5000; i++) { int kk = 0; for(int j = 2; j <= 5000; j++) { if(f[i][j] || f[j][i]) continue; f[i][j] = 1; f[j][i] = 1; if(vis[i][j] == 'B') cout << "f{" << i << "," << j << "}]=1;"<< endl; } } return 0; }
AC代码:
#include <bits/stdc++.h> using namespace std; typedef pair<int, int> pii; map<pii, int> f; int main() { f[{2,3}] = 1; f[{5,7}] = 1; f[{9,12}] = 1; f[{11,15}] = 1; f[{14,20}] = 1; f[{17,22}] = 1; f[{19,33}] = 1; f[{24,32}] = 1; f[{26,35}] = 1; f[{28,58}] = 1; f[{29,40}] = 1; f[{31,38}] = 1; f[{37,53}] = 1; f[{42,52}] = 1; f[{44,75}] = 1; f[{45,60}] = 1; f[{47,65}] = 1; f[{49,70}] = 1; f[{50,62}] = 1; f[{55,68}] = 1; f[{57,79}] = 1; f[{64,87}] = 1; f[{67,86}] = 1; f[{72,92}] = 1; f[{74,99}] = 1; f[{77,101}] = 1; f[{81,174}] = 1; f[{82,118}] = 1; f[{83,110}] = 1; f[{85,113}] = 1; f[{89,123}] = 1; f[{90,116}] = 1; f[{94,129}] = 1; f[{95,127}] = 1; f[{97,126}] = 1; f[{103,136}] = 1; f[{105,199}] = 1; f[{106,146}] = 1; f[{108,145}] = 1; f[{112,166}] = 1; f[{115,246}] = 1; f[{120,161}] = 1; f[{122,160}] = 1; f[{125,164}] = 1; f[{131,309}] = 1; f[{132,182}] = 1; f[{133,177}] = 1; f[{135,198}] = 1; f[{138,180}] = 1; f[{139,156}] = 1; f[{141,239}] = 1; f[{142,190}] = 1; f[{143,186}] = 1; f[{148,203}] = 1; f[{149,195}] = 1; f[{151,340}] = 1; f[{152,197}] = 1; f[{154,232}] = 1; f[{158,218}] = 1; f[{163,229}] = 1; f[{168,215}] = 1; f[{170,286}] = 1; f[{171,228}] = 1; f[{172,224}] = 1; f[{176,350}] = 1; f[{179,298}] = 1; f[{184,253}] = 1; f[{185,236}] = 1; f[{188,268}] = 1; f[{189,259}] = 1; f[{192,241}] = 1; f[{194,256}] = 1; f[{201,266}] = 1; f[{205,281}] = 1; f[{207,274}] = 1; f[{208,264}] = 1; f[{210,271}] = 1; f[{212,322}] = 1; f[{213,317}] = 1; f[{214,278}] = 1; f[{217,289}] = 1; f[{220,327}] = 1; f[{221,280}] = 1; f[{223,315}] = 1; f[{226,301}] = 1; f[{231,332}] = 1; f[{234,307}] = 1; f[{238,372}] = 1; f[{243,391}] = 1; f[{244,325}] = 1; f[{245,313}] = 1; f[{248,306}] = 1; f[{250,321}] = 1; f[{252,305}] = 1; f[{255,339}] = 1; f[{258,565}] = 1; f[{261,346}] = 1; f[{263,359}] = 1; f[{270,375}] = 1; f[{273,521}] = 1; f[{276,358}] = 1; f[{283,370}] = 1; f[{285,362}] = 1; f[{288,379}] = 1; f[{291,456}] = 1; f[{293,367}] = 1; f[{295,390}] = 1; f[{296,386}] = 1; f[{300,432}] = 1; f[{303,415}] = 1; f[{311,464}] = 1; f[{312,411}] = 1; f[{319,408}] = 1; f[{324,501}] = 1; f[{329,435}] = 1; f[{331,702}] = 1; f[{334,454}] = 1; f[{336,545}] = 1; f[{337,489}] = 1; f[{338,449}] = 1; f[{342,496}] = 1; f[{343,446}] = 1; f[{345,445}] = 1; f[{348,558}] = 1; f[{349,467}] = 1; f[{352,461}] = 1; f[{354,590}] = 1; f[{355,577}] = 1; f[{356,532}] = 1; f[{357,479}] = 1; f[{361,478}] = 1; f[{364,494}] = 1; f[{366,527}] = 1; f[{369,520}] = 1; f[{374,509}] = 1; f[{377,505}] = 1; f[{381,639}] = 1; f[{382,553}] = 1; f[{384,470}] = 1; f[{388,485}] = 1; f[{393,518}] = 1; f[{395,474}] = 1; f[{397,511}] = 1; f[{399,487}] = 1; f[{400,483}] = 1; f[{402,588}] = 1; f[{404,601}] = 1; f[{405,531}] = 1; f[{407,530}] = 1; f[{410,568}] = 1; f[{413,537}] = 1; f[{417,586}] = 1; f[{419,557}] = 1; f[{420,541}] = 1; f[{421,529}] = 1; f[{423,525}] = 1; f[{425,580}] = 1; f[{427,560}] = 1; f[{429,719}] = 1; f[{430,624}] = 1; f[{431,570}] = 1; f[{434,549}] = 1; f[{437,574}] = 1; f[{439,603}] = 1; f[{440,600}] = 1; f[{442,683}] = 1; f[{443,556}] = 1; f[{448,614}] = 1; f[{451,871}] = 1; f[{452,651}] = 1; f[{453,620}] = 1; f[{458,772}] = 1; f[{459,671}] = 1; f[{460,596}] = 1; f[{463,661}] = 1; f[{466,666}] = 1; f[{469,610}] = 1; f[{472,761}] = 1; f[{473,632}] = 1; f[{476,760}] = 1; f[{477,691}] = 1; f[{481,660}] = 1; f[{491,726}] = 1; f[{492,635}] = 1; f[{498,673}] = 1; f[{499,646}] = 1; f[{503,653}] = 1; f[{504,649}] = 1; f[{507,788}] = 1; f[{508,648}] = 1; f[{513,776}] = 1; f[{514,716}] = 1; f[{515,664}] = 1; f[{516,658}] = 1; f[{523,740}] = 1; f[{534,893}] = 1; f[{535,855}] = 1; f[{539,752}] = 1; f[{540,735}] = 1; f[{543,723}] = 1; f[{547,825}] = 1; f[{548,800}] = 1; f[{551,697}] = 1; f[{555,711}] = 1; f[{562,1202}] = 1; f[{563,771}] = 1; f[{564,693}] = 1; f[{567,737}] = 1; f[{572,744}] = 1; f[{576,766}] = 1; f[{579,780}] = 1; f[{582,986}] = 1; f[{583,768}] = 1; f[{585,748}] = 1; f[{592,877}] = 1; f[{593,811}] = 1; f[{594,805}] = 1; f[{595,722}] = 1; f[{598,1599}] = 1; f[{599,828}] = 1; f[{605,866}] = 1; f[{606,845}] = 1; f[{607,810}] = 1; f[{609,849}] = 1; f[{612,842}] = 1; f[{616,831}] = 1; f[{617,822}] = 1; f[{619,787}] = 1; f[{622,818}] = 1; f[{626,799}] = 1; f[{628,785}] = 1; f[{630,836}] = 1; f[{634,778}] = 1; f[{637,879}] = 1; f[{641,886}] = 1; f[{643,899}] = 1; f[{644,827}] = 1; f[{655,1046}] = 1; f[{656,918}] = 1; f[{657,876}] = 1; f[{663,870}] = 1; f[{668,989}] = 1; f[{669,929}] = 1; f[{675,985}] = 1; f[{676,857}] = 1; f[{678,912}] = 1; f[{679,904}] = 1; f[{680,896}] = 1; f[{682,1107}] = 1; f[{685,869}] = 1; f[{687,964}] = 1; f[{689,920}] = 1; f[{695,883}] = 1; f[{699,946}] = 1; f[{700,937}] = 1; f[{704,948}] = 1; f[{706,910}] = 1; f[{708,957}] = 1; f[{710,892}] = 1; f[{713,996}] = 1; f[{714,935}] = 1; f[{718,969}] = 1; f[{721,976}] = 1; f[{725,1358}] = 1; f[{728,1010}] = 1; f[{730,917}] = 1; f[{732,924}] = 1; f[{734,1167}] = 1; f[{739,1062}] = 1; f[{742,1036}] = 1; f[{743,1007}] = 1; f[{746,1065}] = 1; f[{747,1000}] = 1; f[{750,982}] = 1; f[{751,944}] = 1; f[{754,1020}] = 1; f[{756,1013}] = 1; f[{757,995}] = 1; f[{759,1854}] = 1; f[{763,991}] = 1; f[{765,1038}] = 1; f[{770,1150}] = 1; f[{774,1017}] = 1; f[{782,1032}] = 1; f[{784,1085}] = 1; f[{790,1082}] = 1; f[{791,1061}] = 1; f[{793,1090}] = 1; f[{794,956}] = 1; f[{796,1029}] = 1; f[{797,1023}] = 1; f[{802,1777}] = 1; f[{803,1072}] = 1; f[{807,1081}] = 1; f[{808,1079}] = 1; f[{813,1118}] = 1; f[{814,1117}] = 1; f[{815,1110}] = 1; f[{816,1040}] = 1; f[{820,1131}] = 1; f[{824,1070}] = 1; f[{830,1098}] = 1; f[{833,1053}] = 1; f[{835,1122}] = 1; f[{838,1201}] = 1; f[{839,1165}] = 1; f[{841,1322}] = 1; f[{844,1241}] = 1; f[{847,1225}] = 1; f[{848,1120}] = 1; f[{851,1190}] = 1; f[{852,1106}] = 1; f[{853,1076}] = 1; f[{859,1145}] = 1; f[{861,1206}] = 1; f[{862,1180}] = 1; f[{863,1130}] = 1; f[{864,1055}] = 1; f[{868,1156}] = 1; f[{873,1384}] = 1; f[{874,1212}] = 1; f[{875,1102}] = 1; f[{881,1194}] = 1; f[{882,1175}] = 1; f[{885,1164}] = 1; f[{888,1192}] = 1; f[{890,1186}] = 1; f[{895,1285}] = 1; f[{898,1227}] = 1; f[{901,2018}] = 1; f[{902,1211}] = 1; f[{906,1208}] = 1; f[{908,1261}] = 1; f[{909,1231}] = 1; f[{914,1245}] = 1; f[{915,1214}] = 1; f[{922,1394}] = 1; f[{923,1269}] = 1; f[{926,1363}] = 1; f[{927,1243}] = 1; f[{931,1274}] = 1; f[{933,1307}] = 1; f[{939,1405}] = 1; f[{940,1268}] = 1; f[{942,1381}] = 1; f[{943,1219}] = 1; f[{950,1265}] = 1; f[{952,1314}] = 1; f[{954,1254}] = 1; f[{959,1311}] = 1; f[{960,1297}] = 1; f[{962,1420}] = 1; f[{963,1295}] = 1; f[{966,1390}] = 1; f[{967,1279}] = 1; f[{971,1337}] = 1; f[{972,1302}] = 1; f[{973,1248}] = 1; f[{975,3859}] = 1; f[{978,1284}] = 1; f[{980,1547}] = 1; f[{981,1348}] = 1; f[{984,1317}] = 1; f[{988,1451}] = 1; f[{993,1378}] = 1; f[{994,1329}] = 1; f[{998,1812}] = 1; f[{999,1372}] = 1; f[{1002,1336}] = 1; f[{1004,1461}] = 1; f[{1005,1400}] = 1; f[{1006,1346}] = 1; f[{1009,1366}] = 1; f[{1012,1361}] = 1; f[{1015,1465}] = 1; f[{1016,1432}] = 1; f[{1019,1419}] = 1; f[{1022,1477}] = 1; f[{1025,1376}] = 1; f[{1027,1292}] = 1; f[{1031,1633}] = 1; f[{1034,1389}] = 1; f[{1035,1371}] = 1; f[{1042,1527}] = 1; f[{1043,1334}] = 1; f[{1045,1387}] = 1; f[{1048,1458}] = 1; f[{1050,2369}] = 1; f[{1051,1331}] = 1; f[{1057,1695}] = 1; f[{1058,1414}] = 1; f[{1060,1408}] = 1; f[{1064,1446}] = 1; f[{1067,1543}] = 1; f[{1068,1521}] = 1; f[{1069,1413}] = 1; f[{1074,1514}] = 1; f[{1075,1492}] = 1; f[{1078,1428}] = 1; f[{1084,1687}] = 1; f[{1087,1499}] = 1; f[{1088,1457}] = 1; f[{1089,1397}] = 1; f[{1092,1468}] = 1; f[{1094,1455}] = 1; f[{1096,1443}] = 1; f[{1100,1425}] = 1; f[{1104,1464}] = 1; f[{1109,1481}] = 1; f[{1112,1606}] = 1; f[{1113,1539}] = 1; f[{1115,1758}] = 1; f[{1116,1484}] = 1; f[{1124,1510}] = 1; f[{1125,1449}] = 1; f[{1127,1626}] = 1; f[{1129,1516}] = 1; f[{1133,1575}] = 1; f[{1134,1509}] = 1; f[{1136,1532}] = 1; f[{1137,1502}] = 1; f[{1139,1537}] = 1; f[{1140,1438}] = 1; f[{1142,1563}] = 1; f[{1143,1470}] = 1; f[{1144,1403}] = 1; f[{1147,2604}] = 1; f[{1148,1674}] = 1; f[{1149,1581}] = 1; f[{1152,1541}] = 1; f[{1153,1536}] = 1; f[{1155,1534}] = 1; f[{1158,1569}] = 1; f[{1159,1529}] = 1; f[{1161,1525}] = 1; f[{1163,1592}] = 1; f[{1169,1561}] = 1; f[{1171,1612}] = 1; f[{1173,1619}] = 1; f[{1174,1491}] = 1; f[{1177,2077}] = 1; f[{1178,1577}] = 1; f[{1182,2623}] = 1; f[{1183,1560}] = 1; f[{1185,1665}] = 1; f[{1188,1611}] = 1; f[{1196,1906}] = 1; f[{1197,1590}] = 1; f[{1199,1653}] = 1; f[{1200,1636}] = 1; f[{1204,1679}] = 1; f[{1210,2455}] = 1; f[{1216,1736}] = 1; f[{1217,1625}] = 1; f[{1221,1640}] = 1; f[{1223,1929}] = 1; f[{1224,1717}] = 1; f[{1229,1617}] = 1; f[{1233,1730}] = 1; f[{1235,1678}] = 1; f[{1236,1651}] = 1; f[{1237,1643}] = 1; f[{1238,1622}] = 1; f[{1239,1580}] = 1; f[{1247,1605}] = 1; f[{1250,1820}] = 1; f[{1251,1746}] = 1; f[{1253,1721}] = 1; f[{1256,2215}] = 1; f[{1257,1799}] = 1; f[{1258,1661}] = 1; f[{1260,1708}] = 1; f[{1263,1769}] = 1; f[{1264,1713}] = 1; f[{1267,1795}] = 1; f[{1271,2004}] = 1; f[{1272,1707}] = 1; f[{1276,1694}] = 1; f[{1278,1692}] = 1; f[{1281,1682}] = 1; f[{1283,1664}] = 1; f[{1287,1882}] = 1; f[{1289,1702}] = 1; f[{1290,1684}] = 1; f[{1294,1866}] = 1; f[{1299,1845}] = 1; f[{1300,1756}] = 1; f[{1301,1710}] = 1; f[{1304,1825}] = 1; f[{1305,1765}] = 1; f[{1309,1832}] = 1; f[{1310,1774}] = 1; f[{1313,2810}] = 1; f[{1316,1767}] = 1; f[{1319,1811}] = 1; f[{1320,1754}] = 1; f[{1324,2388}] = 1; f[{1325,1787}] = 1; f[{1327,1729}] = 1; f[{1333,2140}] = 1; f[{1339,1822}] = 1; f[{1340,1785}] = 1; f[{1342,1850}] = 1; f[{1343,1802}] = 1; f[{1344,1782}] = 1; f[{1350,2840}] = 1; f[{1351,2288}] = 1; f[{1352,1842}] = 1; f[{1354,1831}] = 1; f[{1356,1888}] = 1; f[{1357,1762}] = 1; f[{1360,1838}] = 1; f[{1365,1879}] = 1; f[{1368,1884}] = 1; f[{1369,1878}] = 1; f[{1370,1859}] = 1; f[{1374,2836}] = 1; f[{1375,2036}] = 1; f[{1380,1824}] = 1; f[{1383,1919}] = 1; f[{1386,1904}] = 1; f[{1392,1863}] = 1; f[{1396,1901}] = 1; f[{1399,1978}] = 1; f[{1402,1966}] = 1; f[{1407,1914}] = 1; f[{1410,1877}] = 1; f[{1412,2042}] = 1; f[{1416,1847}] = 1; f[{1418,1772}] = 1; f[{1422,1935}] = 1; f[{1424,2040}] = 1; f[{1427,2981}] = 1; f[{1430,1837}] = 1; f[{1434,1975}] = 1; f[{1436,1953}] = 1; f[{1437,1923}] = 1; f[{1440,2051}] = 1; f[{1441,1994}] = 1; f[{1442,1869}] = 1; f[{1445,2209}] = 1; f[{1448,1949}] = 1; f[{1453,2007}] = 1; f[{1460,1947}] = 1; f[{1463,2011}] = 1; f[{1467,2230}] = 1; f[{1472,1942}] = 1; f[{1474,2205}] = 1; f[{1475,1922}] = 1; f[{1479,2031}] = 1; f[{1480,1941}] = 1; f[{1483,2134}] = 1; f[{1486,2657}] = 1; f[{1487,2026}] = 1; f[{1489,2107}] = 1; f[{1490,2030}] = 1; f[{1494,1992}] = 1; f[{1495,1964}] = 1; f[{1497,1997}] = 1; f[{1501,2098}] = 1; f[{1504,1986}] = 1; f[{1505,1970}] = 1; f[{1507,2003}] = 1; f[{1508,1981}] = 1; f[{1512,2191}] = 1; f[{1513,2088}] = 1; f[{1518,2096}] = 1; f[{1520,1972}] = 1; f[{1523,3303}] = 1; f[{1524,2059}] = 1; f[{1531,2076}] = 1; f[{1545,2390}] = 1; f[{1546,2056}] = 1; f[{1549,2421}] = 1; f[{1550,2094}] = 1; f[{1551,2070}] = 1; f[{1553,2129}] = 1; f[{1554,2033}] = 1; f[{1555,2029}] = 1; f[{1557,2116}] = 1; f[{1559,3159}] = 1; f[{1565,2067}] = 1; f[{1566,2050}] = 1; f[{1568,2105}] = 1; f[{1571,2001}] = 1; f[{1573,2256}] = 1; f[{1574,2161}] = 1; f[{1579,2103}] = 1; f[{1583,2338}] = 1; f[{1584,2180}] = 1; f[{1586,2148}] = 1; f[{1587,2137}] = 1; f[{1588,2100}] = 1; f[{1589,2080}] = 1; f[{1594,2168}] = 1; f[{1596,3385}] = 1; f[{1597,2085}] = 1; f[{1601,2195}] = 1; f[{1603,2152}] = 1; f[{1604,2142}] = 1; f[{1608,2329}] = 1; f[{1609,2281}] = 1; f[{1610,2203}] = 1; f[{1614,2198}] = 1; f[{1616,2176}] = 1; f[{1621,2184}] = 1; f[{1624,2669}] = 1; f[{1628,2194}] = 1; f[{1630,2145}] = 1; f[{1632,3560}] = 1; f[{1635,2302}] = 1; f[{1638,2229}] = 1; f[{1642,2224}] = 1; f[{1645,2954}] = 1; f[{1646,2298}] = 1; f[{1647,2276}] = 1; f[{1648,2255}] = 1; f[{1650,2239}] = 1; f[{1655,2310}] = 1; f[{1657,2182}] = 1; f[{1659,2217}] = 1; f[{1663,2193}] = 1; f[{1667,2640}] = 1; f[{1668,2366}] = 1; f[{1669,2356}] = 1; f[{1670,2174}] = 1; f[{1672,2293}] = 1; f[{1673,2202}] = 1; f[{1676,2347}] = 1; f[{1681,2271}] = 1; f[{1686,3335}] = 1; f[{1689,2437}] = 1; f[{1690,2237}] = 1; f[{1691,2222}] = 1; f[{1697,4572}] = 1; f[{1698,2297}] = 1; f[{1699,2268}] = 1; f[{1700,2261}] = 1; f[{1701,2234}] = 1; f[{1704,2132}] = 1; f[{1706,2287}] = 1; f[{1712,2246}] = 1; f[{1715,2607}] = 1; f[{1716,2439}] = 1; f[{1719,2341}] = 1; f[{1723,2368}] = 1; f[{1724,2322}] = 1; f[{1726,2335}] = 1; f[{1728,2283}] = 1; f[{1732,2376}] = 1; f[{1734,3235}] = 1; f[{1735,2495}] = 1; f[{1738,2427}] = 1; f[{1740,2490}] = 1; f[{1741,2163}] = 1; f[{1743,2362}] = 1; f[{1744,2350}] = 1; f[{1745,2318}] = 1; f[{1748,3156}] = 1; f[{1749,2453}] = 1; f[{1751,2254}] = 1; f[{1753,2345}] = 1; f[{1760,2426}] = 1; f[{1761,2317}] = 1; f[{1764,2406}] = 1; f[{1771,2538}] = 1; f[{1776,2381}] = 1; f[{1779,2557}] = 1; f[{1780,2411}] = 1; f[{1781,2385}] = 1; f[{1784,2449}] = 1; f[{1789,2402}] = 1; f[{1790,2358}] = 1; f[{1792,2393}] = 1; f[{1794,2404}] = 1; f[{1797,2910}] = 1; f[{1798,2375}] = 1; f[{1801,3252}] = 1; f[{1804,2516}] = 1; f[{1805,2332}] = 1; f[{1807,2435}] = 1; f[{1808,2420}] = 1; f[{1810,2473}] = 1; f[{1814,2365}] = 1; f[{1816,3712}] = 1; f[{1817,2400}] = 1; f[{1818,2398}] = 1; f[{1827,2957}] = 1; f[{1828,2469}] = 1; f[{1830,2415}] = 1; f[{1834,2634}] = 1; f[{1835,2459}] = 1; f[{1840,2751}] = 1; f[{1841,2523}] = 1; f[{1844,2493}] = 1; f[{1849,2485}] = 1; f[{1852,2879}] = 1; f[{1856,2720}] = 1; f[{1857,2551}] = 1; f[{1858,2444}] = 1; f[{1861,3273}] = 1; f[{1862,2613}] = 1; f[{1865,2513}] = 1; f[{1868,3991}] = 1; f[{1871,2505}] = 1; f[{1873,2395}] = 1; f[{1875,2830}] = 1; f[{1876,2502}] = 1; f[{1881,2576}] = 1; f[{1886,2773}] = 1; f[{1890,2525}] = 1; f[{1891,2462}] = 1; f[{1893,2743}] = 1; f[{1894,2572}] = 1; f[{1896,2709}] = 1; f[{1897,2511}] = 1; f[{1899,2600}] = 1; f[{1900,2515}] = 1; f[{1903,2567}] = 1; f[{1908,4079}] = 1; f[{1909,2509}] = 1; f[{1911,2564}] = 1; f[{1913,2530}] = 1; f[{1916,2592}] = 1; f[{1917,2575}] = 1; f[{1921,2708}] = 1; f[{1925,2550}] = 1; f[{1926,2549}] = 1; f[{1927,2492}] = 1; f[{1931,4030}] = 1; f[{1932,2700}] = 1; f[{1933,2665}] = 1; f[{1934,2642}] = 1; f[{1937,2597}] = 1; f[{1938,2570}] = 1; f[{1940,2548}] = 1; f[{1944,2661}] = 1; f[{1951,2789}] = 1; f[{1952,2689}] = 1; f[{1955,2675}] = 1; f[{1956,2647}] = 1; f[{1958,2632}] = 1; f[{1959,2616}] = 1; f[{1961,2931}] = 1; f[{1963,2761}] = 1; f[{1968,2953}] = 1; f[{1969,2691}] = 1; f[{1974,2611}] = 1; f[{1977,2673}] = 1; f[{1980,2986}] = 1; f[{1983,2645}] = 1; f[{1985,2738}] = 1; f[{1988,2687}] = 1; f[{1989,2546}] = 1; f[{1991,2707}] = 1; f[{1996,2780}] = 1; f[{1999,2704}] = 1; f[{2006,3078}] = 1; f[{2009,2682}] = 1; f[{2013,2556}] = 1; f[{2015,2729}] = 1; f[{2016,2684}] = 1; f[{2020,2938}] = 1; f[{2021,2702}] = 1; f[{2023,2779}] = 1; f[{2025,2671}] = 1; f[{2028,3048}] = 1; f[{2035,4593}] = 1; f[{2038,2832}] = 1; f[{2039,2627}] = 1; f[{2044,3121}] = 1; f[{2045,2785}] = 1; f[{2047,2749}] = 1; f[{2048,2668}] = 1; f[{2053,4805}] = 1; f[{2055,2747}] = 1; f[{2058,2733}] = 1; f[{2061,3037}] = 1; f[{2062,2759}] = 1; f[{2064,2806}] = 1; f[{2066,2754}] = 1; f[{2069,2902}] = 1; f[{2072,2816}] = 1; f[{2074,2809}] = 1; f[{2079,2850}] = 1; f[{2082,3254}] = 1; f[{2083,3207}] = 1; f[{2084,2856}] = 1; f[{2087,2798}] = 1; f[{2090,2956}] = 1; f[{2091,2768}] = 1; f[{2092,2746}] = 1; f[{2102,2891}] = 1; f[{2109,3138}] = 1; f[{2110,2864}] = 1; f[{2111,2758}] = 1; f[{2113,2883}] = 1; f[{2114,2804}] = 1; f[{2118,4706}] = 1; f[{2119,2788}] = 1; f[{2121,2925}] = 1; f[{2122,2921}] = 1; f[{2124,2899}] = 1; f[{2125,2834}] = 1; f[{2126,2826}] = 1; f[{2128,2778}] = 1; f[{2131,3334}] = 1; f[{2139,2882}] = 1; f[{2144,3811}] = 1; f[{2147,2881}] = 1; f[{2150,3039}] = 1; f[{2151,2869}] = 1; f[{2154,2970}] = 1; f[{2155,2862}] = 1; f[{2157,4055}] = 1; f[{2158,2814}] = 1; f[{2160,2919}] = 1; f[{2165,2792}] = 1; f[{2167,2943}] = 1; f[{2170,2873}] = 1; f[{2172,3020}] = 1; f[{2173,2843}] = 1; f[{2178,2927}] = 1; f[{2179,2917}] = 1; f[{2186,3478}] = 1; f[{2187,2846}] = 1; f[{2189,2985}] = 1; f[{2197,3244}] = 1; f[{2200,2915}] = 1; f[{2207,3067}] = 1; f[{2208,3036}] = 1; f[{2211,3908}] = 1; f[{2212,2905}] = 1; f[{2214,3024}] = 1; f[{2219,2946}] = 1; f[{2221,3261}] = 1; f[{2226,3229}] = 1; f[{2227,3015}] = 1; f[{2228,2997}] = 1; f[{2232,3064}] = 1; f[{2233,2972}] = 1; f[{2236,2960}] = 1; f[{2241,3061}] = 1; f[{2242,3007}] = 1; f[{2244,2974}] = 1; f[{2248,3119}] = 1; f[{2249,3001}] = 1; f[{2251,3148}] = 1; f[{2252,3089}] = 1; f[{2253,3026}] = 1; f[{2258,3110}] = 1; f[{2259,3099}] = 1; f[{2260,2979}] = 1; f[{2263,3433}] = 1; f[{2265,2993}] = 1; f[{2267,3046}] = 1; f[{2270,3006}] = 1; f[{2273,3338}] = 1; f[{2274,3032}] = 1; f[{2275,3004}] = 1; f[{2279,3589}] = 1; f[{2280,3097}] = 1; f[{2285,3031}] = 1; f[{2290,3172}] = 1; f[{2292,3333}] = 1; f[{2295,3057}] = 1; f[{2300,3193}] = 1; f[{2301,3084}] = 1; f[{2304,3460}] = 1; f[{2305,3163}] = 1; f[{2306,3125}] = 1; f[{2308,3130}] = 1; f[{2312,3118}] = 1; f[{2314,3425}] = 1; f[{2316,3128}] = 1; f[{2320,3218}] = 1; f[{2321,3082}] = 1; f[{2324,3117}] = 1; f[{2326,3250}] = 1; f[{2328,3012}] = 1; f[{2331,3113}] = 1; f[{2334,3202}] = 1; f[{2340,3570}] = 1; f[{2343,3396}] = 1; f[{2344,3145}] = 1; f[{2349,3763}] = 1; f[{2352,3519}] = 1; f[{2353,3197}] = 1; f[{2354,3101}] = 1; f[{2360,3423}] = 1; f[{2361,3217}] = 1; f[{2364,4038}] = 1; f[{2371,3585}] = 1; f[{2372,3289}] = 1; f[{2373,3247}] = 1; f[{2374,3177}] = 1; f[{2378,3731}] = 1; f[{2379,3213}] = 1; f[{2380,3106}] = 1; f[{2383,3201}] = 1; f[{2384,3169}] = 1; f[{2387,3314}] = 1; f[{2392,3182}] = 1; f[{2397,3810}] = 1; f[{2408,3359}] = 1; f[{2409,3190}] = 1; f[{2413,3179}] = 1; f[{2417,3103}] = 1; f[{2419,3512}] = 1; f[{2423,3258}] = 1; f[{2425,4507}] = 1; f[{2429,3393}] = 1; f[{2431,3116}] = 1; f[{2433,3341}] = 1; f[{2434,3225}] = 1; f[{2441,3327}] = 1; f[{2442,3317}] = 1; f[{2443,3302}] = 1; f[{2446,3269}] = 1; f[{2448,4240}] = 1; f[{2451,3281}] = 1; f[{2452,3232}] = 1; f[{2457,3351}] = 1; f[{2461,3552}] = 1; f[{2465,3206}] = 1; f[{2467,3413}] = 1; f[{2472,3246}] = 1; f[{2475,3299}] = 1; f[{2477,3864}] = 1; f[{2478,3598}] = 1; f[{2479,3287}] = 1; f[{2481,3500}] = 1; f[{2482,3345}] = 1; f[{2484,3286}] = 1; f[{2487,3498}] = 1; f[{2488,3297}] = 1; f[{2489,3294}] = 1; f[{2497,4154}] = 1; f[{2498,3495}] = 1; f[{2499,3325}] = 1; f[{2501,3384}] = 1; f[{2504,3941}] = 1; f[{2507,3358}] = 1; f[{2508,3355}] = 1; f[{2518,3441}] = 1; f[{2519,3381}] = 1; f[{2520,3374}] = 1; f[{2521,3350}] = 1; f[{2527,3471}] = 1; f[{2529,3368}] = 1; f[{2532,3412}] = 1; f[{2533,3379}] = 1; f[{2535,3534}] = 1; f[{2537,3323}] = 1; f[{2540,3838}] = 1; f[{2541,3693}] = 1; f[{2542,3544}] = 1; f[{2543,3488}] = 1; f[{2544,3405}] = 1; f[{2553,3924}] = 1; f[{2554,3395}] = 1; f[{2555,3391}] = 1; f[{2559,3592}] = 1; f[{2560,3538}] = 1; f[{2561,3241}] = 1; f[{2563,3510}] = 1; f[{2566,3502}] = 1; f[{2569,3422}] = 1; f[{2574,3699}] = 1; f[{2578,3536}] = 1; f[{2579,3467}] = 1; f[{2580,3459}] = 1; f[{2581,3454}] = 1; f[{2582,3377}] = 1; f[{2584,3684}] = 1; f[{2585,3475}] = 1; f[{2586,3343}] = 1; f[{2587,3312}] = 1; f[{2590,3722}] = 1; f[{2594,3409}] = 1; f[{2595,3372}] = 1; f[{2599,3466}] = 1; f[{2602,3558}] = 1; f[{2606,3518}] = 1; f[{2609,3464}] = 1; f[{2615,4125}] = 1; f[{2618,3628}] = 1; f[{2619,3605}] = 1; f[{2620,3601}] = 1; f[{2621,3525}] = 1; f[{2625,3739}] = 1; f[{2626,3418}] = 1; f[{2629,3578}] = 1; f[{2630,3508}] = 1; f[{2636,3667}] = 1; f[{2637,3480}] = 1; f[{2638,3463}] = 1; f[{2644,3621}] = 1; f[{2649,4089}] = 1; f[{2650,3671}] = 1; f[{2651,3547}] = 1; f[{2652,3449}] = 1; f[{2654,3367}] = 1; f[{2656,3584}] = 1; f[{2659,3569}] = 1; f[{2663,4619}] = 1; f[{2664,3506}] = 1; f[{2667,3772}] = 1; f[{2677,3748}] = 1; f[{2678,3720}] = 1; f[{2679,3658}] = 1; f[{2680,3529}] = 1; f[{2693,4018}] = 1; f[{2694,3614}] = 1; f[{2696,3565}] = 1; f[{2698,3844}] = 1; f[{2699,3638}] = 1; f[{2706,3640}] = 1; f[{2711,3977}] = 1; f[{2712,3619}] = 1; f[{2714,4162}] = 1; f[{2715,3665}] = 1; f[{2717,3643}] = 1; f[{2718,3549}] = 1; f[{2722,4815}] = 1; f[{2723,3600}] = 1; f[{2725,4479}] = 1; f[{2726,3635}] = 1; f[{2728,3814}] = 1; f[{2731,3852}] = 1; f[{2732,3727}] = 1; f[{2735,3759}] = 1; f[{2736,3689}] = 1; f[{2737,3651}] = 1; f[{2740,3832}] = 1; f[{2741,3676}] = 1; f[{2742,3647}] = 1; f[{2745,3898}] = 1; f[{2753,3917}] = 1; f[{2756,3719}] = 1; f[{2757,3673}] = 1; f[{2763,4052}] = 1; f[{2765,3698}] = 1; f[{2767,3825}] = 1; f[{2770,3974}] = 1; f[{2771,3709}] = 1; f[{2775,3705}] = 1; f[{2777,4012}] = 1; f[{2782,3681}] = 1; f[{2784,3890}] = 1; f[{2787,4608}] = 1; f[{2791,3656}] = 1; f[{2794,3862}] = 1; f[{2795,3714}] = 1; f[{2797,3957}] = 1; f[{2800,3762}] = 1; f[{2801,3733}] = 1; f[{2802,3704}] = 1; f[{2808,3769}] = 1; f[{2812,3848}] = 1; f[{2813,3787}] = 1; f[{2818,3743}] = 1; f[{2820,3854}] = 1; f[{2823,3771}] = 1; f[{2825,3756}] = 1; f[{2828,4075}] = 1; f[{2829,3724}] = 1; f[{2838,3999}] = 1; f[{2839,3793}] = 1; f[{2842,4745}] = 1; f[{2845,3888}] = 1; f[{2848,3932}] = 1; f[{2849,3886}] = 1; f[{2852,4550}] = 1; f[{2853,3824}] = 1; f[{2855,3777}] = 1; f[{2858,3955}] = 1; f[{2859,3882}] = 1; f[{2860,3781}] = 1; f[{2861,3776}] = 1; f[{2866,3809}] = 1; f[{2867,3737}] = 1; f[{2871,4390}] = 1; f[{2872,4186}] = 1; f[{2875,3907}] = 1; f[{2876,3767}] = 1; f[{2878,4044}] = 1; f[{2886,3900}] = 1; f[{2889,3880}] = 1; f[{2893,4011}] = 1; f[{2895,3835}] = 1; f[{2897,4782}] = 1; f[{2898,3801}] = 1; f[{2901,3995}] = 1; f[{2904,4336}] = 1; f[{2907,3935}] = 1; f[{2909,3822}] = 1; f[{2912,3916}] = 1; f[{2914,3971}] = 1; f[{2923,4197}] = 1; f[{2924,4109}] = 1; f[{2929,3927}] = 1; f[{2930,3872}] = 1; f[{2933,4192}] = 1; f[{2934,4135}] = 1; f[{2936,3923}] = 1; f[{2940,3841}] = 1; f[{2941,3798}] = 1; f[{2945,4152}] = 1; f[{2948,3948}] = 1; f[{2950,3944}] = 1; f[{2952,4027}] = 1; f[{2959,4138}] = 1; f[{2962,4199}] = 1; f[{2963,4160}] = 1; f[{2964,3921}] = 1; f[{2966,4082}] = 1; f[{2967,3896}] = 1; f[{2968,3795}] = 1; f[{2976,4151}] = 1; f[{2977,3982}] = 1; f[{2978,3966}] = 1; f[{2983,3998}] = 1; f[{2988,4779}] = 1; f[{2989,4231}] = 1; f[{2990,4121}] = 1; f[{2991,4081}] = 1; f[{2995,4074}] = 1; f[{2996,3965}] = 1; f[{2999,4363}] = 1; f[{3000,4060}] = 1; f[{3003,4302}] = 1; f[{3009,4237}] = 1; f[{3010,4017}] = 1; f[{3011,3952}] = 1; f[{3014,4443}] = 1; f[{3017,4010}] = 1; f[{3019,4037}] = 1; f[{3023,4103}] = 1; f[{3028,4176}] = 1; f[{3029,4141}] = 1; f[{3030,3914}] = 1; f[{3034,4107}] = 1; f[{3035,4070}] = 1; f[{3041,4111}] = 1; f[{3043,4051}] = 1; f[{3045,4128}] = 1; f[{3050,4249}] = 1; f[{3051,4016}] = 1; f[{3053,4097}] = 1; f[{3055,3961}] = 1; f[{3059,4700}] = 1; f[{3060,4049}] = 1; f[{3063,4330}] = 1; f[{3066,3877}] = 1; f[{3069,4278}] = 1; f[{3072,4150}] = 1; f[{3074,4057}] = 1; f[{3076,3821}] = 1; f[{3080,4263}] = 1; f[{3081,4033}] = 1; f[{3086,4140}] = 1; f[{3087,4100}] = 1; f[{3091,4447}] = 1; f[{3092,4234}] = 1; f[{3093,4219}] = 1; f[{3094,4120}] = 1; f[{3096,4223}] = 1; f[{3105,4324}] = 1; f[{3108,4449}] = 1; f[{3112,4503}] = 1; f[{3115,4222}] = 1; f[{3123,4119}] = 1; f[{3127,4173}] = 1; f[{3132,4429}] = 1; f[{3133,4184}] = 1; f[{3136,4195}] = 1; f[{3137,4146}] = 1; f[{3140,4262}] = 1; f[{3143,4210}] = 1; f[{3147,4209}] = 1; f[{3150,4026}] = 1; f[{3152,4253}] = 1; f[{3153,4169}] = 1; f[{3158,4243}] = 1; f[{3162,4272}] = 1; f[{3165,4182}] = 1; f[{3167,4563}] = 1; f[{3168,4361}] = 1; f[{3171,4543}] = 1; f[{3174,4683}] = 1; f[{3175,4271}] = 1; f[{3181,4300}] = 1; f[{3184,4395}] = 1; f[{3187,4068}] = 1; f[{3189,4291}] = 1; f[{3192,4296}] = 1; f[{3195,4247}] = 1; f[{3199,4348}] = 1; f[{3204,4307}] = 1; f[{3209,4338}] = 1; f[{3211,4261}] = 1; f[{3212,4172}] = 1; f[{3215,4314}] = 1; f[{3216,4277}] = 1; f[{3220,4343}] = 1; f[{3221,4319}] = 1; f[{3223,4992}] = 1; f[{3224,4506}] = 1; f[{3227,4495}] = 1; f[{3228,4446}] = 1; f[{3231,4425}] = 1; f[{3234,4373}] = 1; f[{3237,4375}] = 1; f[{3239,4305}] = 1; f[{3243,4528}] = 1; f[{3249,4454}] = 1; f[{3256,4471}] = 1; f[{3257,4345}] = 1; f[{3260,4610}] = 1; f[{3264,4581}] = 1; f[{3265,4290}] = 1; f[{3268,4547}] = 1; f[{3271,4549}] = 1; f[{3272,4310}] = 1; f[{3275,4356}] = 1; f[{3277,4539}] = 1; f[{3278,4270}] = 1; f[{3280,4165}] = 1; f[{3283,4526}] = 1; f[{3285,4341}] = 1; f[{3291,4493}] = 1; f[{3293,4473}] = 1; f[{3296,4546}] = 1; f[{3301,4678}] = 1; f[{3306,4453}] = 1; f[{3308,4452}] = 1; f[{3309,4442}] = 1; f[{3310,4384}] = 1; f[{3316,4466}] = 1; f[{3320,4288}] = 1; f[{3322,4511}] = 1; f[{3329,4416}] = 1; f[{3331,4298}] = 1; f[{3337,4317}] = 1; f[{3347,4663}] = 1; f[{3348,4635}] = 1; f[{3349,4523}] = 1; f[{3354,4744}] = 1; f[{3357,4519}] = 1; f[{3361,4383}] = 1; f[{3364,4522}] = 1; f[{3366,4525}] = 1; f[{3370,4650}] = 1; f[{3371,4552}] = 1; f[{3383,4438}] = 1; f[{3387,4399}] = 1; f[{3389,4914}] = 1; f[{3390,4622}] = 1; f[{3398,4532}] = 1; f[{3399,4468}] = 1; f[{3400,4372}] = 1; f[{3402,4559}] = 1; f[{3404,4434}] = 1; f[{3407,4489}] = 1; f[{3411,4579}] = 1; f[{3415,4810}] = 1; f[{3417,4725}] = 1; f[{3421,4631}] = 1; f[{3427,4897}] = 1; f[{3428,4691}] = 1; f[{3429,4605}] = 1; f[{3430,4478}] = 1; f[{3432,4398}] = 1; f[{3435,4690}] = 1; f[{3436,4601}] = 1; f[{3438,4487}] = 1; f[{3440,4712}] = 1; f[{3443,4571}] = 1; f[{3446,4675}] = 1; f[{3447,4670}] = 1; f[{3448,4599}] = 1; f[{3452,4567}] = 1; f[{3453,4437}] = 1; f[{3457,4803}] = 1; f[{3458,4595}] = 1; f[{3462,4945}] = 1; f[{3469,4578}] = 1; f[{3473,4892}] = 1; f[{3474,4856}] = 1; f[{3477,4708}] = 1; f[{3482,4660}] = 1; f[{3483,4628}] = 1; f[{3485,4733}] = 1; f[{3486,4621}] = 1; f[{3490,4882}] = 1; f[{3491,4717}] = 1; f[{3492,4674}] = 1; f[{3494,4809}] = 1; f[{3497,4681}] = 1; f[{3505,4847}] = 1; f[{3514,4836}] = 1; f[{3515,4742}] = 1; f[{3517,4751}] = 1; f[{3521,4657}] = 1; f[{3524,4763}] = 1; f[{3527,4876}] = 1; f[{3528,4761}] = 1; f[{3531,4969}] = 1; f[{3532,4722}] = 1; f[{3540,4789}] = 1; f[{3542,4181}] = 1; f[{3551,4773}] = 1; f[{3555,4850}] = 1; f[{3557,4832}] = 1; f[{3562,4705}] = 1; f[{3567,4941}] = 1; f[{3568,4644}] = 1; f[{3574,4786}] = 1; f[{3576,4921}] = 1; f[{3577,4740}] = 1; f[{3580,4768}] = 1; f[{3582,4979}] = 1; f[{3583,4778}] = 1; f[{3588,4967}] = 1; f[{3591,4928}] = 1; f[{3594,4818}] = 1; f[{3595,4772}] = 1; f[{3596,4586}] = 1; f[{3603,4839}] = 1; f[{3607,4428}] = 1; f[{3609,4801}] = 1; f[{3612,4889}] = 1; f[{3613,4652}] = 1; f[{3616,4939}] = 1; f[{3617,4871}] = 1; f[{3623,4821}] = 1; f[{3625,4765}] = 1; f[{3631,4935}] = 1; f[{3633,4926}] = 1; f[{3634,4807}] = 1; f[{3637,4845}] = 1; f[{3642,4977}] = 1; f[{3645,4814}] = 1; f[{3650,5002}] = 1; f[{3654,4959}] = 1; f[{3655,4907}] = 1; f[{3661,4972}] = 1; f[{3662,4878}] = 1; f[{3663,4771}] = 1; f[{3669,4865}] = 1; f[{3675,4888}] = 1; f[{3680,4956}] = 1; f[{3686,4775}] = 1; f[{3692,4948}] = 1; f[{3717,4903}] = 1; f[{3726,4932}] = 1; f[{3742,5000}] = 1; f[{3750,4732}] = 1; f[{3753,4953}] = 1; int t, n, m; cin >> t; while(t--) { cin >> n >> m; if(n > m) swap(n, m); if(f[{n, m}] == 1) cout << "Bob" << endl; else cout << "Alice" << endl; } return 0; }