数据结构 模板
单链表
// head存储链表头,e[]存储节点的值,ne[]存储节点的next指针,idx表示当前用到了哪个节点 int head, e[N], ne[N], idx; // 初始化 void init() { head = -1; idx = 0; } // 在链表头插入一个数a void insert(int a) { e[idx] = a, ne[idx] = head, head = idx ++ ; } // 将头结点删除,需要保证头结点存在 void remove() { head = ne[head]; }
双链表
// e[]表示节点的值,l[]表示节点的左指针,r[]表示节点的右指针,idx表示当前用到了哪个节点 int e[N], l[N], r[N], idx; // 初始化 void init() { //0是左端点,1是右端点 r[0] = 1, l[1] = 0; idx = 2; } // 在节点a的右边插入一个数x void insert(int a, int x) { e[idx] = x; l[idx] = a, r[idx] = r[a]; l[r[a]] = idx, r[a] = idx ++ ; } // 删除节点a void remove(int a) { l[r[a]] = l[a]; r[l[a]] = r[a]; }
栈
// tt表示栈顶 int stk[N], tt = 0; // 向栈顶插入一个数 stk[ ++ tt] = x; // 从栈顶弹出一个数 tt -- ; // 栈顶的值 stk[tt]; // 判断栈是否为空 if (tt > 0) { }
队列
1.普通队列
// hh 表示队头,tt表示队尾 int q[N], hh = 0, tt = -1; // 向队尾插入一个数 q[ ++ tt] = x; // 从队头弹出一个数 hh ++ ; // 队头的值 q[hh]; // 判断队列是否为空 if (hh <= tt) { }
2.循环队列
// hh 表示队头,tt表示队尾的后一个位置 int q[N], hh = 0, tt = 0; // 向队尾插入一个数 q[tt ++ ] = x; if (tt == N) tt = 0; // 从队头弹出一个数 hh ++ ; if (hh == N) hh = 0; // 队头的值 q[hh]; // 判断队列是否为空 if (hh != tt) { }
单调栈
常见模型:找出滑动窗口中的最大值/最小值 int hh = 0, tt = -1; for (int i = 0; i < n; i ++ ) { while (hh <= tt && check_out(q[hh])) hh ++ ; // 判断队头是否滑出窗口 while (hh <= tt && check(q[tt], i)) tt -- ; q[ ++ tt] = i; }
单调队列
常见模型:找出滑动窗口中的最大值/最小值 int hh = 0, tt = -1; for (int i = 0; i < n; i ++ ) { while (hh <= tt && check_out(q[hh])) hh ++ ; // 判断队头是否滑出窗口 while (hh <= tt && check(q[tt], i)) tt -- ; q[ ++ tt] = i; }
KMP算法
// s[]是长文本,p[]是模式串,n是s的长度,m是p的长度 求模式串的Next数组: for (int i = 2, j = 0; i <= m; i ++ ) { while (j && p[i] != p[j + 1]) j = ne[j]; if (p[i] == p[j + 1]) j ++ ; ne[i] = j; } // 匹配 for (int i = 1, j = 0; i <= n; i ++ ) { while (j && s[i] != p[j + 1]) j = ne[j]; if (s[i] == p[j + 1]) j ++ ; if (j == m) { j = ne[j]; // 匹配成功后的逻辑 } }
Trie树
int son[N][26], cnt[N], idx; // 0号点既是根节点,又是空节点 // son[][]存储树中每个节点的子节点 // cnt[]存储以每个节点结尾的单词数量 // 插入一个字符串 void insert(char *str) { int p = 0; for (int i = 0; str[i]; i ++ ) { int u = str[i] - 'a'; if (!son[p][u]) son[p][u] = ++ idx; p = son[p][u]; } cnt[p] ++ ; } // 查询字符串出现的次数 int query(char *str) { int p = 0; for (int i = 0; str[i]; i ++ ) { int u = str[i] - 'a'; if (!son[p][u]) return 0; p = son[p][u]; } return cnt[p]; }
并查集
(1)朴素并查集: int p[N]; //存储每个点的祖宗节点 // 返回x的祖宗节点 int find(int x) { if (p[x] != x) p[x] = find(p[x]); return p[x]; } // 初始化,假定节点编号是1~n for (int i = 1; i <= n; i ++ ) p[i] = i; // 合并a和b所在的两个集合: p[find(a)] = find(b); (2)维护size的并查集: int p[N], size[N]; //p[]存储每个点的祖宗节点, size[]只有祖宗节点的有意义,表示祖宗节点所在集合中的点的数量 // 返回x的祖宗节点 int find(int x) { if (p[x] != x) p[x] = find(p[x]); return p[x]; } // 初始化,假定节点编号是1~n for (int i = 1; i <= n; i ++ ) { p[i] = i; size[i] = 1; } // 合并a和b所在的两个集合: size[find(b)] += size[find(a)]; p[find(a)] = find(b); (3)维护到祖宗节点距离的并查集: int p[N], d[N]; //p[]存储每个点的祖宗节点, d[x]存储x到p[x]的距离 // 返回x的祖宗节点 int find(int x) { if (p[x] != x) { int u = find(p[x]); d[x] += d[p[x]]; p[x] = u; } return p[x]; } // 初始化,假定节点编号是1~n for (int i = 1; i <= n; i ++ ) { p[i] = i; d[i] = 0; } // 合并a和b所在的两个集合: p[find(a)] = find(b); d[find(a)] = distance; // 根据具体问题,初始化find(a)的偏移量
堆
// h[N]存储堆中的值, h[1]是堆顶,x的左儿子是2x, 右儿子是2x + 1 // ph[k]存储第k个插入的点在堆中的位置 // hp[k]存储堆中下标是k的点是第几个插入的 int h[N], ph[N], hp[N], size; // 交换两个点,及其映射关系 void heap_swap(int a, int b) { swap(ph[hp[a]],ph[hp[b]]); swap(hp[a], hp[b]); swap(h[a], h[b]); } void down(int u) { int t = u; if (u * 2 <= size && h[u * 2] < h[t]) t = u * 2; if (u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1; if (u != t) { heap_swap(u, t); down(t); } } void up(int u) { while (u / 2 && h[u] < h[u / 2]) { heap_swap(u, u / 2); u >>= 1; } } // O(n)建堆 for (int i = n / 2; i; i -- ) down(i);
一般哈希
(1) 拉链法 int h[N], e[N], ne[N], idx; // 向哈希表中插入一个数 void insert(int x) { int k = (x % N + N) % N; e[idx] = x; ne[idx] = h[k]; h[k] = idx ++ ; } // 在哈希表中查询某个数是否存在 bool find(int x) { int k = (x % N + N) % N; for (int i = h[k]; i != -1; i = ne[i]) if (e[i] == x) return true; return false; } (2) 开放寻址法 int h[N]; // 如果x在哈希表中,返回x的下标;如果x不在哈希表中,返回x应该插入的位置 int find(int x) { int t = (x % N + N) % N; while (h[t] != null && h[t] != x) { t ++ ; if (t == N) t = 0; } return t; }
字符串哈希
核心思想:将字符串看成P进制数,P的经验值是131或13331,取这两个值的冲突概率低 小技巧:取模的数用2^64,这样直接用unsigned long long存储,溢出的结果就是取模的结果 typedef unsigned long long ULL; ULL h[N], p[N]; // h[k]存储字符串前k个字母的哈希值, p[k]存储 P^k mod 2^64 // 初始化 p[0] = 1; for (int i = 1; i <= n; i ++ ) { h[i] = h[i - 1] * P + str[i]; p[i] = p[i - 1] * P; } // 计算子串 str[l ~ r] 的哈希值 ULL get(int l, int r) { return h[r] - h[l - 1] * p[r - l + 1]; }
算法专题 文章被收录于专栏
怕忘记,好复习