无向图连通度(割)
无向图连通度(割)
/* * INIT: edge[][]邻接矩阵;vis[],pre[],anc[],deg[]置为0; * CALL: dfs(0, -1, 1, n); * k = deg[0], deg[i] + 1(i = 1...n - 1)为删除该节点后得到的连通图个数 * 注意: 0作为根比较特殊 */
const int V = 1010;
int edge[V][V];
int anc[V];
int pre[V];
int vis[V];
int deg[V];
void dfs(int cur, int father, int dep, int n)
{
//vertex:0 ~ n - 1
int cnt = 0;
vis[cur] = 1;
pre[cur] = anc[cur] = dep;
for (int i = 0; i < n; i++)
{
if (edge[cur][i])
{
if (i != father && 1 == vis[i])
{
if (pre[i] < anc[cur])
{
anc[cur] = pre[i]; //back edge
}
}
if (0 == vis[i]) //tree edge
{
dfs(i, cur, dep + 1, n);
cnt++; //分支个数
if (anc[i] < anc[cur])
{
anc[cur] = anc[i];
}
if ((cur == 0 && cnt > 1) || (cnt != 0 && anc[i] >= pre[cur]))
{
deg[cur]++; //link degree of a vertex
}
}
}
}
vis[cur] = 2;
return ;
}