欧拉函数PHI

ACM模版

分解质因数法

参考:
《合数相关》

/*
 *  分解质因数法求解,getFactor(n)函数见《合数相关》
 */
int main(int argc, const char * argv[])
{
    //  ...
    getFactors(n);
    int ret = n;
    for (int i = 0; i < fatCnt; i++)
    {
        ret = (int)(ret / factor[i][0] * (factor[i][0] - 1));
    }
    return 0;
}

筛法欧拉函数

const int MAXN = 100;

int phi[MAXN + 2];

int main(int argc, const char * argv[])
{
    for (int i = 1; i <= MAXN; i++)
    {
        phi[i] = i;
    }
    for (int i = 2; i <= MAXN; i += 2)
    {
        phi[i] /= 2;
    }
    for (int i = 3; i <= MAXN; i += 2)
    {
        if (phi[i] == i)
        {
            for (int j = i; j <= MAXN; j += i)
            {
                phi[j] = phi[j] / i * (i - 1);
            }
        }
    }

    return 0;
}

单独求解

/* * 单独求解的本质是公式的应用 */
unsigned euler(unsigned x)
{
    unsigned i, res = x;    // unsigned == unsigned int
    for (i = 2; i < (int)sqrt(x * 1.0) + 1; i++)
    {
        if (!(x % i))
        {
            res = res / i * (i - 1);
            while (!(x % i))
            {
                x /= i;     // 保证i一定是素数
            }
        }
    }
    if (x > 1)
    {
        res = res / x * (x - 1);
    }
    return res;
}

线性筛

/* * 同时得到欧拉函数和素数表 */
const int MAXN = 10000000;

bool check[MAXN + 10];
int phi[MAXN + 10];
int prime[MAXN + 10];
int tot;    // 素数个数

void phi_and_prime_table(int N)
{
    memset(check, false, sizeof(check));
    phi[1] = 1;
    tot = 0;
    for (int i = 2; i <= N; i++)
    {
        if (!check[i])
        {
            prime[tot++] = i;
            phi[i] = i - 1;
        }
        for (int j = 0; j < tot; j++)
        {
            if (i * prime[j] > N)
            {
                break;
            }
            check[i * prime[j]] = true;
            if (i % prime[j] == 0)
            {
                phi[i * prime[j]] = phi[i] * prime[j];
                break;
            }
            else
            {
                phi[i * prime[j]] = phi[i] * (prime[j] - 1);
            }
        }
    }
    return ;
}
全部评论

相关推荐

不愿透露姓名的神秘牛友
昨天 18:54
点赞 评论 收藏
分享
不愿透露姓名的神秘牛友
今天 10:48
点赞 评论 收藏
分享
CrazyBucket:我今天下午也做梦在招聘会上面试一家小厂,给自己气笑了
点赞 评论 收藏
分享
头像
今天 14:28
长沙理工大学
刷算法真的是提升代码能力最快的方法吗?&nbsp;刷算法真的是提升代码能力最快的方法吗?
牛牛不会牛泪:看你想提升什么,代码能力太宽泛了,是想提升算法能力还是工程能力? 工程能力做项目找实习,算法也分数据结构算法题和深度学习之类算法
点赞 评论 收藏
分享
点赞 收藏 评论
分享
牛客网
牛客企业服务