模线性方程(组)

ACM模版

公共部分(扩展GCD)

int extgcd(int a, int b, int &x, int &y)
{
    if (b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }
    int d = extgcd(b, a % b, x, y);
    int t = x;
    x = y;
    y = t - a / b * y;
    return d;
}

模线性方程

/* * 模线性方程 a * x = b (% n) */
void modeq(int a, int b, int n)
{
    int e, i, d, x, y;
    d = extgcd(b, a % b, x, y);
    if (b % d > 0)
    {
        cout << "No answer!\n";
    }
    else
    {
        e = (x * (b / d)) % n;
        for (i = 0; i < d; i++)
        {
            cout << i + 1 << "-th ans:" << (e + i * (n / d)) % n << '\n';
        }
    }
    return ;
}

模线性方程组(互质)

/*
 *  模线性方程组
 *  a = B[1](% W[1]); a = B[2](% W[2]); ... a = B[k](% W[k]);
 *  其中W,B已知,W[i] > 0且W[i]与W[j]互质,求a(中国剩余定理)
 */

int china(int b[], int w[], int k)
{
 int i, d, x, y, m, a = 0, n = 1;
 for (i = 0; i < k; i++)
 {
   
 n *= w[i]; // 注意不能overflow
 }
 for (i = 0; i < k; i++)
 {
   
 m = n / w[i];
 d = extgcd(w[i], m, x, y);
 a = (a + y * m * b[i]) % n;
 }
 if (a > 0)
 {
   
 return a;
 }
 else
 {
   
 return (a + n);
 }
}

模线性方程组(不要求互质)

typedef long long ll;

const int MAXN = 11;

int n, m;
int a[MAXN], b[MAXN];

int main(int argc, const char * argv[])
{
    int T;
    cin >> T;

    while (T--)
    {
        cin >> n >> m;
        for (int i = 0; i < m; i++)
        {
            cin >> a[i];
        }
        for (int i = 0; i < m; i++)
        {
            cin >> b[i];
        }

        ll ax = a[0], bx = b[0], x, y;
        int flag = 0;
        for (int i = 1; i < m; i++)
        {
            ll d = extgcd(ax, a[i], x, y);
            if ((b[i] - bx) % d != 0)
            {
                flag = 1;   // 无整数解
                break;
            }

            ll tmp = a[i] / d;
            x = x * (b[i] - bx) / d;    // 约分
            x = (x % tmp + tmp) % tmp;
            bx = bx + ax * x;
            ax = ax * tmp;              // ax = ax * a[i] / d
        }

        if (flag == 1 || n < bx)
        {
            puts("0");
        }
        else
        {
            ll ans = (n - bx) / ax + 1;
            if (bx == 0)
            {
                ans--;
            }
            printf("%lld\n", ans);
        }
    }

    return 0;
}
全部评论

相关推荐

尊尼获获:闺蜜在哪?
点赞 评论 收藏
分享
点赞 收藏 评论
分享
牛客网
牛客企业服务