Coursera机器学习-Week 5-编程作业:Neural Network Learning
上周末本来是要搞定这个的,结果死活无法加载出来 Coursera C o u r s e r a 的视频,到周一才反应过来是不是 VPN V P N 的问题,然后一看果然是……最开始错怪 Coursera C o u r s e r a 了。
1.3 & 1.4 nnCostFunction.m
计算花费并且对其正则化。
function [J grad] = nnCostFunction(nn_params, ...
input_layer_size, ...
hidden_layer_size, ...
num_labels, ...
X, y, lambda)
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
%neural network which performs classification
% [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
% X, y, lambda) computes the cost and gradient of the neural network. The
% parameters for the neural network are "unrolled" into the vector
% nn_params and need to be converted back into the weight matrices.
%
% The returned parameter grad should be a "unrolled" vector of the
% partial derivatives of the neural network.
%
% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
hidden_layer_size, (input_layer_size + 1));
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
num_labels, (hidden_layer_size + 1));
% Setup some useful variables
m = size(X, 1);
% You need to return the following variables correctly
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));
% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the code by working through the
% following parts.
%
% Part 1: Feedforward the neural network and return the cost in the
% variable J. After implementing Part 1, you can verify that your
% cost function computation is correct by verifying the cost
% computed in ex4.m
%
% Part 2: Implement the backpropagation algorithm to compute the gradients
% Theta1_grad and Theta2_grad. You should return the partial derivatives of
% the cost function with respect to Theta1 and Theta2 in Theta1_grad and
% Theta2_grad, respectively. After implementing Part 2, you can check
% that your implementation is correct by running checkNNGradients
%
% Note: The vector y passed into the function is a vector of labels
% containing values from 1..K. You need to map this vector into a
% binary vector of 1's and 0's to be used with the neural network
% cost function.
%
% Hint: We recommend implementing backpropagation using a for-loop
% over the training examples if you are implementing it for the
% first time.
%
% Part 3: Implement regularization with the cost function and gradients.
%
% Hint: You can implement this around the code for
% backpropagation. That is, you can compute the gradients for
% the regularization separately and then add them to Theta1_grad
% and Theta2_grad from Part 2.
%
% 计算各层的结果
a1 = [ones(m, 1) X];
z2 = Theta1 * a1';
a2 = sigmoid(z2);
a2 = [ones(1, m); a2];
z3 = Theta2 * a2;
a3 = sigmoid(z3);
% 将 y 向量化
yVec = zeros(num_labels, m);
for i = 1 : m
yVec(y(i), i) = 1;
end;
% 累加 m 组测试数据的花费
for i = 1 : m
J += sum(-1 * yVec(:, i) .* log(a3(:, i)) - (1 - yVec(:, i)) .* log(1 - a3(:, i)));
end;
J = J / m;
% 正则化处理(bias unit 不参与正则化)
J = J + lambda * (sum(sum(Theta1(:, 2 : end) .^ 2)) + sum(sum(Theta2(:, 2 : end) .^ 2))) / 2 / m;
% 反向传播吖
Delta1 = zeros(size(Theta1));
Delta2 = zeros(size(Theta2));
for i = 1 : m
delta3 = a3(:, i) - yVec(:, i)
delta2 = (Theta2' * delta3)(2 : end, :) .* sigmoidGradient(z2(:, i));
Delta2 += delta3 * a2(:, i)';
Delta1 += delta2 * a1(i, :);
end;
Theta2_grad = Delta2 / m;
Theta1_grad = Delta1 / m;
% 正则化梯度
Theta2_grad(:, 2 : end) = Theta2_grad(:, 2 : end) .+ lambda * Theta2(:, 2 : end) / m;
Theta1_grad(:, 2 : end) = Theta1_grad(:, 2 : end) .+ lambda * Theta1(:, 2 : end) / m;
% -------------------------------------------------------------
% =========================================================================
% Unroll gradients
grad = [Theta1_grad(:) ; Theta2_grad(:)];
end
2.1 sigmoidGradient.m
g′(z)=ddzg(z)=g(z)(1−g(z)) g ′ ( z ) = d d z g ( z ) = g ( z ) ( 1 − g ( z ) )
sigmoid(z)=g(z)=11+e−z s i g m o i d ( z ) = g ( z ) = 1 1 + e − z
function g = sigmoidGradient(z)
%SIGMOIDGRADIENT returns the gradient of the sigmoid function
%evaluated at z
% g = SIGMOIDGRADIENT(z) computes the gradient of the sigmoid function
% evaluated at z. This should work regardless if z is a matrix or a
% vector. In particular, if z is a vector or matrix, you should return
% the gradient for each element.
g = zeros(size(z));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the gradient of the sigmoid function evaluated at
% each value of z (z can be a matrix, vector or scalar).
g = sigmoid(z) .* (1 - sigmoid(z));
% =============================================================
end
2.2 randInitializeWeights.m
在初始 θ θ 的时候,每次选择某一层的 θ θ ,然后让该层所有的 θ θ 都随机选取,范围 [−ϵinit,ϵinit] [ − ϵ i n i t , ϵ i n i t ] 。
参考:
function W = randInitializeWeights(L_in, L_out)
%RANDINITIALIZEWEIGHTS Randomly initialize the weights of a layer with L_in
%incoming connections and L_out outgoing connections
% W = RANDINITIALIZEWEIGHTS(L_in, L_out) randomly initializes the weights
% of a layer with L_in incoming connections and L_out outgoing
% connections.
%
% Note that W should be set to a matrix of size(L_out, 1 + L_in) as
% the first column of W handles the "bias" terms
%
% You need to return the following variables correctly
W = zeros(L_out, 1 + L_in);
% ====================== YOUR CODE HERE ======================
% Instructions: Initialize W randomly so that we break the symmetry while
% training the neural network.
%
% Note: The first column of W corresponds to the parameters for the bias unit
%
epsilon_init = 0.12
W = rand(L_out, 1 + L_in) * 2 * epsilon_init - epsilon_init;
% =========================================================================
end
结果
这周代码貌似挺少的,不过看英文文档依然是最大的障碍。