嵌入式系统设计师学习笔记①:数的进制转换

嵌入式系统设计师学习笔记:数的转换

进位计数制系统的基本概念:数制,基数,数码,数位,位权

制作了个表格如下:

在十六进制中:A-10,B-11,C-12,D-13,E-14,F-15。

举例各种进制的表示方法:

//以十进制的数99举例
十进制:99D
二进制:1100011B
八进制:143O
十六进制:59H或0x59
数的转换:

R进制→十进制:
使用按权展开法
将R进制数的每一位数值用R^k(R的k次方)形式表示
R为底数/基数
k为指数

例如:(采用按权展开法)

十进制的按权展开法表示:985.1D=9*10^2+8*10^1+5*10^0+1*10^-1 = 985.1D
二进制->十进制:10100.01B = 1*2^4+1*2^2+1*2^-2 = 20.25D
八进制->十进制:604.01O = 6*8^2+4*8^0+1*8^-2 = 388.015625D

如果是十进制转R进制:使用短除法
具体如图:

利用短除法一直除到余数小于除数为止。

二进制<---->八进制互相转换(便捷方法):

由于利用32进制即可表示一位8进制数,由此得到此规律:
十进制:144
二进制数:010  001  110
八进制数:2    1    6

同理利用42进制即可表示一位16进制数,由此得到此规律:
十进制:1340
二进制数:0101  0011  1100
十六进制数:5    3     B // B = 12

提供书上的一个对应表格:

全部评论

相关推荐

我在朝九晚六双休的联想等你:如果我是你,身体素质好我会去参军,然后走士兵计划考研211只需要200多分。
点赞 评论 收藏
分享
评论
点赞
收藏
分享
牛客网
牛客企业服务