树链剖分的边权转点权问题
将边权->点权,只需要在dfs的时候求出两个点的深度,把边权下方到深度更深的节点上即可。
但是转化完之后,最后query_path的时候要注意,是求的son[u]和v之间的信息(因为点u保存的是u点到他的father节点之间的那条边,不应该算在u->v内)
Housewife Wind
tips:边权转化为点权,然后单点修改线段树,线段树维护区间和信息。
一点需要注意:如果query_path最后的u == v,就要直接break而不能算了。因为边权转化为点权后算son[u]和v的信息会出错。
#include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #define ll long long using namespace std; const int N = 200010; int n,s,q,idx; int fa[N],son[N],id[N],nw[N],sz[N],top[N],dep[N],cnt; //树链剖分 int w[N],ne[N],e[N],h[N],ww[N]; struct node{ int l, r, w; }mp[N]; //线段树维护区间和 struct tr{ int l, r, sum; }tr[N << 2]; void pushup(int u){ tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;} void build(int u, int l, int r){ tr[u] = {l, r, nw[l]}; if(l == r) return ; int mid = l + r >> 1; build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r); pushup(u); } void modify(int u, int x, int v){ if(tr[u].l == tr[u].r && tr[u].l == x){ tr[u].sum = v; return ; }else{ int mid = tr[u].l + tr[u].r >> 1; if(x <= mid) modify(u << 1, x, v); else modify(u << 1 | 1, x, v); pushup(u); } } int query(int u, int l, int r){ if(tr[u].l >= l && tr[u].r <= r) return tr[u].sum; int mid = tr[u].l + tr[u].r >> 1; int res = 0; if(l <= mid) res += query(u << 1, l, r); if(r > mid) res += query(u << 1 | 1, l, r); return res; } //树链剖分 void dfs1(int u, int father, int depth){ sz[u] = 1, fa[u] = father, dep[u] = depth; for(int i = h[u]; ~i; i = ne[i]){ int j = e[i]; if(j == father) continue ; dfs1(j, u, depth + 1); sz[u] += sz[j]; w[j] = ww[i]; //边权——>点权 if(sz[son[u]] < sz[j]) son[u] = j; } } void dfs2(int u, int t){ id[u] = ++ cnt, nw[cnt] = w[u], top[u] = t; if(!son[u]) return ; dfs2(son[u], t); for(int i = h[u]; ~i; i = ne[i]){ int j = e[i]; if(j == fa[u] || j == son[u]) continue ; dfs2(j, j); } } int query_path(int u, int v){ int res = 0; while(top[u] != top[v]){ if(dep[top[u]] < dep[top[v]]) swap(u, v); res += query(1, id[top[u]], id[u]); u = fa[top[u]]; } if(u == v) return res; //这里非常重要!!!! if(dep[u] < dep[v]) swap(u, v); res += query(1, id[son[v]], id[u]); return res; } void add(int a, int b, int c){ e[idx] = b, ww[idx] = c, ne[idx] = h[a], h[a] = idx ++;} int main(){ cin >> n >> q >> s; memset(h, -1, sizeof h); for(int i = 1; i <= n - 1; ++ i){ int a, b, c; scanf("%d%d%d",&a,&b,&c); mp[i] = {a, b, c}; add(a, b, c), add(b, a, c); } dfs1(1, -1, 1); dfs2(1, 1); build(1, 1, n); while(q --){ int op, x, v; scanf("%d%d",&op,&x); if(op == 0) printf("%d\n", query_path(s, x)), s = x; else{ scanf("%d",&v); int a = mp[x].l, b = mp[x].r; if(dep[a] < dep[b]) swap(a, b); modify(1, id[a], v); } } return 0; }
I Imperial roads
题意:多组询问,每组询问固定一条边,求此时的mst的权值。
思路:先求出原图的mst,并建图(是原图的最小生成树)。然后每次询问的边如果在mst中,就直接输出mst的值,否则,在新图上求这条边连接的点之间的最长一条路径,把他去掉再加上新边的值即可。(加上一条新边之后会生成一个环,然后去掉原先这个环中最大的一条边即可)。
树链剖分后用线段树维护区间最大值(两点之间路径的权值最大的边)。
还是注意最后son[u]和v的问题。
#include<bits/stdc++.h> #define PII pair<int, int> #define ll long long using namespace std; const int N = 200010; int n,m,q; int f[N],ne[N],e[N],w[N],ww[N],idx,h[N]; // 建新图, ww是边权,w是点权 struct node{ // mst int s, e, w; }mp[N]; bool cmp(node n1, node n2){return n1.w < n2.w;} int id[N],top[N],fa[N],sz[N],dep[N],son[N],nw[N],cnt; //树链剖分 ll ans; //mst的权值 map<PII, int> rec; //记录所有边 map<PII, bool> mst; //记录在mst中的边 struct tr{ int l, r, maxx; }tr[N << 2]; void add(int a, int b, int c){ e[idx] = b, ww[idx] = c, ne[idx] = h[a], h[a] = idx ++;} int find(int x){ return f[x] == x ? x : f[x] = find(f[x]);} int unite(int x, int y){ int r1 = find(x), r2 = find(y); if(r1 == r2) return false; f[r2] = r1; return true; } void kruskal(){ int num = 0; for(int i = 1; i <= m; ++ i){ if(unite(mp[i].s, mp[i].e)){ ans += mp[i].w; add(mp[i].s, mp[i].e, mp[i].w); add(mp[i].e, mp[i].s, mp[i].w); //建新图 mst[{mp[i].s, mp[i].e}] = true; num ++; } if(num == n - 1) break; } } void init(){ for(int i = 1; i <= n; ++ i) f[i] = i; memset(h, -1, sizeof h); } // 线段树函数 void pushup(int u){ tr[u].maxx = max(tr[u << 1].maxx, tr[u << 1 | 1].maxx);} void build(int u, int l, int r){ tr[u] = {l, r, nw[l]}; if(l == r) return; int mid = l + r >> 1; build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r); pushup(u); } ll query(int u, int l, int r){ if(tr[u].l >= l && tr[u].r <= r) return tr[u].maxx; int mid = tr[u].l + tr[u].r >> 1; ll res = 0; if(l <= mid) res = max(res, query(u << 1, l, r)); if(r > mid) res = max(res, query(u << 1 | 1, l, r)); return res; } // 树链剖分函数 void dfs1(int u, int father, int depth){ //求重儿子 sz[u] = 1, fa[u] = father, dep[u] = depth; for(int i = h[u]; ~i; i = ne[i]){ int j = e[i]; if(j == father) continue ; dfs1(j, u, depth + 1); if(dep[u] < dep[j]) w[j] = ww[i]; //点权->边权 else w[u] = ww[i]; sz[u] += sz[j]; if(sz[son[u]] < sz[j]) son[u] = j; } } void dfs2(int u, int t){ //划分轻重链 id[u] = ++ cnt, top[u] = t, nw[cnt] = w[u]; if(!son[u]) return ; dfs2(son[u], t); for(int i = h[u]; ~i; i = ne[i]){ int j = e[i]; if(j == fa[u] || j == son[u]) continue ; dfs2(j, j); } } ll query_path(int u, int v){ ll res = 0; while(top[u] != top[v]){ if(dep[top[u]] < dep[top[v]]) swap(u, v); res = max(res, query(1, id[top[u]], id[u])); u = fa[top[u]]; } if(dep[u] < dep[v]) swap(u, v); res = max(res, query(1, id[son[v]], id[u])); //!!!!! return res; } int main(){ cin >> n >> m; init(); for(int i = 1; i <= m; ++ i) scanf("%d%d%d",&mp[i].s,&mp[i].e,&mp[i].w), rec[{mp[i].s, mp[i].e}] = mp[i].w; sort(mp + 1, mp + 1 + m, cmp); kruskal(); dfs1(1, -1, 1); dfs2(1, 1); build(1, 1, n); cin >> q; while(q --){ int a, b; scanf("%d%d",&a,&b); if(mst.count({a, b}) || mst.count({b, a})) printf("%d\n", ans); else{ ll tmp = query_path(a, b); int z = rec.count({a, b}) ? rec[{a, b}] : rec[{b, a}]; printf("%lld\n", ans + z - tmp); } } return 0; }
P3038 [USACO11DEC]Grass Planting G
题意: 给出一棵n个节点的树,有m个操作,操作为将一条路径上的边权加一或询问某条边的权值。
直接点权转边权即可。
#include<bits/stdc++.h> #define ll long long using namespace std; const int N = 100010, M = 2 * N; int n,m,e[M],h[N],w[N],ne[M],idx; int cnt,top[N],sz[N],fa[N],nw[N],id[N],son[N],dep[N]; //树链剖分 struct node{ int l, r, sum, add; }tr[N << 2]; void add(int a, int b){ e[idx] = b, ne[idx] = h[a], h[a] = idx ++;} //线段树 void pushup(int u){ tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;} void pushdown(int u){ if(tr[u].add){ tr[u << 1].add += tr[u].add, tr[u << 1].sum += (tr[u << 1].r - tr[u << 1].l + 1) * tr[u].add; tr[u << 1 | 1].add += tr[u].add, tr[u << 1 | 1].sum += (tr[u << 1 | 1].r - tr[u << 1 | 1].l + 1) * tr[u].add; tr[u].add = 0; } } void build(int u, int l, int r){ tr[u] = {l, r, 0, 0}; if(l == r) return ; int mid = l + r >> 1; build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r); } void modify(int u, int l, int r, int w){ if(tr[u].l >= l && tr[u].r <= r){ tr[u].add += w; tr[u].sum += (tr[u].r - tr[u].l + 1) * w; }else{ pushdown(u); int mid = tr[u].l + tr[u].r >> 1; if(l <= mid) modify(u << 1, l, r, w); if(r > mid) modify(u << 1 | 1, l, r, w); pushup(u); } } int query(int u, int l, int r){ if(tr[u].l >= l && tr[u].r <= r) return tr[u].sum; pushdown(u); int mid = tr[u].l + tr[u].r >> 1, res = 0; if(l <= mid) res += query(u << 1, l, r); if(r > mid) res += query(u << 1 | 1, l, r); return res; } //树链剖分 void dfs(int u, int father, int depth){ sz[u] = 1, fa[u] = father, dep[u] = depth; for(int i = h[u]; ~i; i = ne[i]){ int j = e[i]; if(j == father) continue ; dfs(j, u, depth + 1); sz[u] += sz[j]; if(sz[son[u]] < sz[j]) son[u] = j; } } void dfs2(int u, int t){ id[u] = ++ cnt, nw[cnt] = w[u], top[u] = t; if(!son[u]) return ; dfs2(son[u], t); for(int i = h[u]; ~i; i = ne[i]){ int j = e[i]; if(j == son[u] || j == fa[u]) continue ; dfs2(j, j); } } void update_path(int u, int v, int w){ while(id[top[u]] != id[top[v]]){ if(dep[top[u]] < dep[top[v]]) swap(u, v); modify(1, id[top[u]], id[u], w); u = fa[top[u]]; } if(dep[u] < dep[v]) swap(u, v); modify(1, id[son[v]], id[u], w); } int query_path(int u, int v){ int res = 0; while(id[top[u]] != id[top[v]]){ if(dep[top[u]] < dep[top[v]]) swap(u, v); res += query(1, id[top[u]], id[u]); u = fa[top[u]]; } if(dep[u] < dep[v]) swap(u, v); res += query(1, id[son[v]], id[u]); return res; } int main(){ cin >> n >> m; memset(h, -1, sizeof h); for(int i = 1; i <= n - 1; ++ i){ int a, b; scanf("%d%d",&a,&b); add(a, b), add(b, a); } dfs(1, -1, 1); dfs2(1, 1); build(1, 1, n); while(m --){ char opt; int x, y; scanf(" %c%d%d",&opt,&x,&y); if(opt == 'P') update_path(x, y, 1); else printf("%d\n", query_path(x, y)); } return 0; }