java数据结构--查找--二分查找

                                            二分查找

1 概念

二分查找是一种查询效率非常高的查找算法。又称折半查找。

起初在数据结构中学习递归时实现二分查找,实际上不用递归也可以实现,毕竟递归是需要开辟额外的空间的来辅助查询。

 

2 二分查找思想

有序的序列,每次都是以序列的中间位置的数来与待查找的关键字进行比较,每次缩小一半的查找范围,直到匹配成功。

一个情景:将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

3 二分查找优缺点

优点是比较次数少,查找速度快,平均性能好;

其缺点是要求待查表为有序表,且插入删除困难。

因此,折半查找方法适用于不经常变动而查找频繁的有序列表。

 

使用条件:查找序列是顺序结构,有序。

4 代码

递归

/**
	 * 使用递归的二分查找
	 *title:recursionBinarySearch
	 *@param arr 有序数组
	 *@param key 待查找关键字
	 *@return 找到的位置
	 */
	public static int recursionBinarySearch(int[] arr,int key,int low,int high){
		
		if(key < arr[low] || key > arr[high] || low > high){
			return -1;				
		}
		
		int middle = (low + high) / 2;			//初始中间位置
		if(arr[middle] > key){
			//比关键字大则关键字在左区域
			return recursionBinarySearch(arr, key, low, middle - 1);
		}else if(arr[middle] < key){
			//比关键字小则关键字在右区域
			return recursionBinarySearch(arr, key, middle + 1, high);
		}else {
			return middle;
		}	
		
	}

非递归

/**
	 * 不使用递归的二分查找
	 *title:commonBinarySearch
	 *@param arr
	 *@param key
	 *@return 关键字位置
	 */
	public static int commonBinarySearch(int[] arr,int key){
		int low = 0;
		int high = arr.length - 1;
		int middle = 0;			//定义middle
		
		if(key < arr[low] || key > arr[high] || low > high){
			return -1;				
		}
		
		while(low <= high){
			middle = (low + high) / 2;
			if(arr[middle] > key){
				//比关键字大则关键字在左区域
				high = middle - 1;
			}else if(arr[middle] < key){
				//比关键字小则关键字在右区域
				low = middle + 1;
			}else{
				return middle;
			}
		}
		
		return -1;		//最后仍然没有找到,则返回-1
	}

5时间空间复杂度

时间复杂度

采用的是分治策略

最坏的情况下两种方式时间复杂度一样:O(log2 N)

 

最好情况下为O(1)

空间复杂度

  算法的空间复杂度并不是计算实际占用的空间,而是计算整个算法的辅助空间单元的个数

非递归方式:

  由于辅助空间是常数级别的所以:

  空间复杂度是O(1);

递归方式:

 递归的次数和深度都是log2 N,每次所需要的辅助空间都是常数级别的:

 空间复杂度:O(log2N )

6LeetCode Binary Search Summary 二分搜索法小结

二分查找法作为一种常见的查找方法,将原本是线性时间提升到了对数时间范围,大大缩短了搜索时间,具有很大的应用场景,而在 LeetCode 中,要运用二分搜索法来解的题目也有很多,但是实际上二分查找法的查找目标有很多种,而且在细节写法也有一些变化。

第一类: 需查找和目标值完全相等的数

这是最简单的一类,也是我们最开始学二分查找法需要解决的问题,比如我们有数组 [2, 4, 5, 6, 9]target = 6,那么我们可以写出二分查找法的代码如下:

int find(vector<int>& nums, int target) {
    int left = 0, right = nums.size();
    while (left < right) {
        int mid = left + (right - left) / 2;
        if (nums[mid] == target) return mid;
        else if (nums[mid] < target) left = mid + 1;
        else right = mid;
    }
    return -1;
}

第二类: 查找第一个不小于目标值的数,可变形为查找最后一个小于目标值的数

这是比较常见的一类,因为我们要查找的目标值不一定会在数组中出现,也有可能是跟目标值相等的数在数组中并不唯一,而是有多个,那么这种情况下 nums[mid] == target 这条判断语句就没有必要存在。比如在数组 [2, 4, 5, 6, 9] 中查找数字3,就会返回数字4的位置;在数组 [0, 1, 1, 1, 1] 中查找数字1,就会返回第一个数字1的位置。我们可以使用如下代码:

int find(vector<int>& nums, int target) {
    int left = 0, right = nums.size();
    while (left < right) {
        int mid = left + (right - left) / 2;
        if (nums[mid] < target) left = mid + 1;
        else right = mid;
    }
    return right;
}

这一类可以轻松的变形为查找最后一个小于目标值的数,怎么变呢。我们已经找到了第一个不小于目标值的数,那么再往前退一位,返回 right - 1,就是最后一个小于目标值的数。

第三类: 查找第一个大于目标值的数,可变形为查找最后一个不大于目标值的数

比如在数组 [2, 4, 5, 6, 9] 中查找数字3,还是返回数字4的位置,这跟上面那查找方式返回的结果相同,因为数字4在此数组中既是第一个不小于目标值3的数,也是第一个大于目标值3的数,所以 make sense;在数组 [0, 1, 1, 1, 1] 中查找数字1,就会返回坐标5,通过对比返回的坐标和数组的长度,我们就知道是否存在这样一个大于目标值的数。参见下面的代码:

int find(vector<int>& nums, int target) {
    int left = 0, right = nums.size();
    while (left < right) {
        int mid = left + (right - left) / 2;
        if (nums[mid] <= target) left = mid + 1;
        else right = mid;
    }
    return right;
}

第四类: 用子函数当作判断关系(通常由 mid 计算得出)

因为这里在二分查找法重要的比较大小的地方使用到了子函数,并不是之前三类中简单的数字大小的比较,比如 Split Array Largest Sum 那道题中的解法一,就是根据是否能分割数组来确定下一步搜索的范围。类似的还有 Guess Number Higher or Lower 这道题,是根据给定函数 guess 的返回值情况来确定搜索的范围。

第五类: 其他(通常 target 值不固定)

有些题目不属于上述的四类,但是还是需要用到二分搜索法,比如这道 Find Peak Element,求的是数组的局部峰值。由于是求的峰值,需要跟相邻的数字比较,那么 target 就不是一个固定的值,而且这道题的一定要注意的是 right 的初始化,一定要是 nums.size() - 1,这是由于算出了 mid 后,nums[mid] 要和 nums[mid+1] 比较,如果 right 初始化为 nums.size() 的话,mid+1 可能会越界,从而不能找到正确的值,同时 while 循环的终止条件必须是 left < right,不能有等号。

类似的还有一道 H-Index II,这道题的 target 也不是一个固定值,而是 len-mid,这就很意思了,跟上面的 nums[mid+1] 有异曲同工之妙,target 值都随着 mid 值的变化而变化,这里的right的初始化,一定要是 nums.size() - 1,而 while 循环的终止条件必须是 left <= right,这里又必须要有等号,是不是很头大 -.-!!!

其实仔细分析的话,可以发现其实这跟第四类还是比较相似,相似点是都很难 -.-!!!,第四类中虽然是用子函数来判断关系,但大部分时候 mid 也会作为一个参数带入子函数进行计算,这样实际上最终算出的值还是受 mid 的影响,但是 right 却可以初始化为数组长度,循环条件也可以不带等号,大家可以对比区别一下~

全部评论

相关推荐

尊尼获获:闺蜜在哪?
点赞 评论 收藏
分享
点赞 评论 收藏
分享
评论
点赞
收藏
分享
牛客网
牛客企业服务