2016ICPC沈阳站 [Cloned]

2016ICPC沈阳站 [Cloned]

A-Thickest Burger

题意:

给了你两种肉的厚度,问加三片肉的最大厚度是多少(不允许加三片相同的肉)

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
int t,a,b;
int main()
{
   
    scanf("%d",&t);
    while(t--)
    {
   
        scanf("%d%d",&a,&b);
        if(a>b)swap(a,b);
        printf("%d\n",a+2*b);
    }
    return 0;
}

B-Relative atomic mass

题意:

给了一个字符串,里面只含有H、O、C,计算相对原子质量总和

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
string s;
int t;
int main()
{
   
    scanf("%d",&t);
    while(t--)
    {
   
        cin>>s;
        int res=0;
        for(int i=0;i<s.length();i++)
        {
   
            if(s[i]=='H')res+=1;
            else if(s[i]=='O')res+=16;
            else if(s[i]=='C')res+=12;
        }
        printf("%d\n",res);
    }
    return 0;
}

C-Recursive sequence

题意:

给了a,b分别代表第一头牛和第二头头牛的数量,让你求第n头牛的数。给定的计算公式如下:
F ( i ) = 2 ∗ F ( i − 2 ) + F ( i − 1 ) + i 4 F(i)=2*F(i-2)+F(i-1)+i^4 F(i)=2F(i2)+F(i1)+i4

solution:

一篇大佬写的博客矩阵快速幂
构造矩阵如下:
第一种:
[ 1 2 1 4 6 4 1 1 0 0 0 0 0 0 0 0 1 4 6 4 1 0 0 0 1 3 3 1 0 0 0 0 1 2 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 ] n − 2 × [ F ( 2 ) F ( 1 ) 1 4 1 3 1 2 1 1 1 0 ] = [ F ( n ) F ( n − 1 ) ( n + 1 ) 4 ( n + 1 ) 3 ( n + 1 ) 2 ( n + 1 ) 1 ( n + 1 ) 0 ] \left[ \begin{matrix} 1&2&1&4&6&4&1\\ 1&0&0&0&0&0&0\\ 0&0&1&4&6&4&1\\ 0&0&0&1&3&3&1\\ 0&0&0&0&1&2&1\\ 0&0&0&0&0&1&1\\ 0&0&0&0&0&0&1 \end{matrix} \right] ^{n-2} \times \left[ \begin{matrix} F(2)\\ F(1)\\ 1^4\\ 1^3\\ 1^2\\ 1^1\\ 1^0 \end{matrix} \right]= \left[ \begin{matrix} F(n)\\ F(n-1)\\ (n+1)^4\\ (n+1)^3\\ (n+1)^2\\ (n+1)^1\\ (n+1)^0 \end{matrix} \right] 1100000200000010100004041000606310040432101011111n2×F(2)F(1)1413121110=F(n)F(n1)(n+1)4(n+1)3(n+1)2(n+1)1(n+1)0

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const ll mod=2147493647;
int n;
ll a,b;
int t;
ll fpow(int ti)
{
   
    ll ttem[7][7];
    ll x[7][7]={
   {
   1,2,1,4,6,4,1},{
   1,0,0,0,0,0,0},{
   0,0,1,4,6,4,1},{
   0,0,0,1,3,3,1},{
   0,0,0,0,1,2,1},{
   0,0,0,0,0,1,1},{
   0,0,0,0,0,0,1}};
    ll tem[7][7]={
   {
   1,0,0,0,0,0,0},{
   0,1,0,0,0,0,0},{
   0,0,1,0,0,0,0},{
   0,0,0,1,0,0,0},{
   0,0,0,0,1,0,0},{
   0,0,0,0,0,1,0},{
   0,0,0,0,0,0,1}};
    while(ti)
    {
   
        if(ti%2)
        {
   
            memset(ttem,0,sizeof(ttem));
            for(int i=0;i<7;i++)
            {
   
                for(int j=0;j<7;j++)
                {
   
                    for(int k=0;k<7;k++)
                        ttem[i][j]=(ttem[i][j]+tem[i][k]*x[k][j])%mod;
                }
            }
            for(int i=0;i<7;i++)
                for(int j=0;j<7;j++)
                tem[i][j]=ttem[i][j];
        }
        ti/=2;
        memset(ttem,0,sizeof(ttem));
        for(int i=0;i<7;i++)
        {
   
            for(int j=0;j<7;j++)
            {
   
                for(int k=0;k<7;k++)
                    ttem[i][j]=(ttem[i][j]+x[i][k]*x[k][j])%mod;
            }
        }
        for(int i=0;i<7;i++)
            for(int j=0;j<7;j++)
            x[i][j]=ttem[i][j];
    }
    ll res=(b*tem[0][0]%mod+a*tem[0][1]%mod+16*tem[0][2]%mod+8*tem[0][3]%mod+4*tem[0][4]%mod+2*tem[0][5]%mod+tem[0][6])%mod;
    return res;
}

int main()
{
   
    scanf("%d",&t);
    while(t--)
    {
   
        scanf("%d%lld%lld",&n,&a,&b);
        if(n==1)printf("%d\n",a);
        else if(n==2)printf("%d\n",b);
        else printf("%lld\n",fpow(n-2));
    }
    return 0;
}

第二种:
[ 1 2 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 4 6 4 1 0 0 0 1 3 3 1 0 0 0 0 1 2 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 ] n − 2 × [ F ( 2 ) F ( 1 ) 3 4 3 3 3 2 3 1 3 0 ] = [ F ( n ) F ( n − 1 ) ( n + 1 ) 4 ( n + 1 ) 3 ( n + 1 ) 2 ( n + 1 ) 1 ( n + 1 ) 0 ] \left[ \begin{matrix} 1&2&1&0&0&0&0\\ 1&0&0&0&0&0&0\\ 0&0&1&4&6&4&1\\ 0&0&0&1&3&3&1\\ 0&0&0&0&1&2&1\\ 0&0&0&0&0&1&1\\ 0&0&0&0&0&0&1 \end{matrix} \right] ^{n-2} \times \left[ \begin{matrix} F(2)\\ F(1)\\ 3^4\\ 3^3\\ 3^2\\ 3^1\\ 3^0 \end{matrix} \right]= \left[ \begin{matrix} F(n)\\ F(n-1)\\ (n+1)^4\\ (n+1)^3\\ (n+1)^2\\ (n+1)^1\\ (n+1)^0 \end{matrix} \right] 1100000200000010100000041000006310000432100011111n2×F(2)F(1)3433323130=F(n)F(n1)(n+1)4(n+1)3(n+1)2(n+1)1(n+1)0

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const ll mod=2147493647;
int n;
ll a,b;
int t;
ll fpow(int ti)
{
   
    ll ttem[7][7];
    ll x[7][7]={
   {
   1,2,1,0,0,0,0},{
   1,0,0,0,0,0,0},{
   0,0,1,4,6,4,1},{
   0,0,0,1,3,3,1},{
   0,0,0,0,1,2,1},{
   0,0,0,0,0,1,1},{
   0,0,0,0,0,0,1}};
    ll tem[7][7]={
   {
   1,0,0,0,0,0,0},{
   0,1,0,0,0,0,0},{
   0,0,1,0,0,0,0},{
   0,0,0,1,0,0,0},{
   0,0,0,0,1,0,0},{
   0,0,0,0,0,1,0},{
   0,0,0,0,0,0,1}};
    while(ti)
    {
   
        if(ti%2)
        {
   
            memset(ttem,0,sizeof(ttem));
            for(int i=0;i<7;i++)
            {
   
                for(int j=0;j<7;j++)
                {
   
                    for(int k=0;k<7;k++)
                        ttem[i][j]=(ttem[i][j]+tem[i][k]*x[k][j])%mod;
                }
            }
            for(int i=0;i<7;i++)
                for(int j=0;j<7;j++)
                tem[i][j]=ttem[i][j];
        }
        ti/=2;
        memset(ttem,0,sizeof(ttem));
        for(int i=0;i<7;i++)
        {
   
            for(int j=0;j<7;j++)
            {
   
                for(int k=0;k<7;k++)
                    ttem[i][j]=(ttem[i][j]+x[i][k]*x[k][j])%mod;
            }
        }
        for(int i=0;i<7;i++)
            for(int j=0;j<7;j++)
            x[i][j]=ttem[i][j];
    }
    ll res=(b*tem[0][0]%mod+a*tem[0][1]%mod+81*tem[0][2]%mod+27*tem[0][3]%mod+9*tem[0][4]%mod+3*tem[0][5]%mod+tem[0][6])%mod;
    return res;
}

int main()
{
   
    scanf("%d",&t);
    while(t--)
    {
   
        scanf("%d%lld%lld",&n,&a,&b);
        if(n==1)printf("%d\n",a);
        else if(n==2)printf("%d\n",b);
        else printf("%lld\n",fpow(n-2));
    }
    return 0;
}

D-Winning an Auction

E-Counting Cliques

F-Similar Rotations

G-Do not pour out

H-Guessing the Dice Roll

I-The Elder

J-Query on a graph

K-New Signal Decomposition

L-A Random Turn Connection Game

M-Subsequence

全部评论

相关推荐

11-01 08:48
门头沟学院 C++
伤心的候选人在吵架:佬你不要的,能不能拿户口本证明过户给我。。球球了
点赞 评论 收藏
分享
点赞 收藏 评论
分享
牛客网
牛客企业服务