Matrix Equation

Matrix Equation

https://ac.nowcoder.com/acm/contest/10662/A

题意:

题目给出两个矩阵X,Y,现在有两种操作
Z = X × Y
D = X⊙Y
在这里插入图片描述
问是否存在一个矩阵C,使得A×C=B⊙C式子成立,问矩阵C能有多少个

题解:

在这里插入图片描述
这个式子在模2意义下的加法就等于异或
也就相当于
在这里插入图片描述
那现在有
在这里插入图片描述
将BC移到左边
在这里插入图片描述
然后将Ci,j的系数进行合并得到:
在这里插入图片描述
aik =Aik

A i,i = = B i,j时,A i,i xor B i,j = 0,ai,i = 0
​A i,i != B i,j时,ai,i = 1
矩阵C是列独立的,所以我们每次对Ci,j列出的向量只涉及第j列中未知数Cij
2^自由元总数即为答案个数。

代码:

#include <bits/stdc++.h>
using namespace std;
const int N=210;
int a[N][N];//增广矩阵
int x[N];//解集
int freeX[N];//自由变元
// equ:方程个数 var:变量个数
int Gauss(int equ,int var){//返回自由变元个数
    /*初始化*/
    for(int i=0;i<=var;i++){
        x[i]=0;
        freeX[i]=0;
    }

    /*转换为阶梯阵*/
    int col=0;//当前处理的列
    int num=0;//自由变元的序号
    int k;//当前处理的行
    for(k=0;k<equ&&col<var;k++,col++){//枚举当前处理的行
        int maxr=k;//当前列绝对值最大的行
        for(int i=k+1;i<equ;i++){//寻找当前列绝对值最大的行
            if(a[i][col]>a[maxr][col]){
                maxr=i;
                swap(a[k],a[maxr]);//与第k行交换
                break;
            }
        }
        if(a[k][col]==0){//col列第k行以下全是0,处理当前行的下一列
            freeX[num++]=col;//记录自由变元
            k--;
            continue;
        }

        for(int i=k+1;i<equ;i++){
            if(a[i][col]!=0){
                for(int j=col;j<var+1;j++){//对于下面出现该列中有1的行,需要把1消掉
                    a[i][j]^=a[k][j];
                }
            }
        }
    }

    /*求解*/
    //无解:化简的增广阵中存在(0,0,...,a)这样的行,且a!=0
    for(int i=k;i<equ;i++)
        if(a[i][col]!=0)
            return -1;

    //无穷解: 在var*(var+1)的增广阵中出现(0,0,...,0)这样的行
    if(k<var)//返回自由变元数
        return var-k;//自由变元有var-k个

    //唯一解: 在var*(var+1)的增广阵中形成严格的上三角阵
    for(int i=var-1;i>=0;i--){//计算解集
        x[i]=a[i][var];
        for(int j=i+1;j<var;j++)
            x[i]^=(a[i][j]&&x[j]);
    }
    return 0;
}


void testf(){
    for(int i=0;i<3;i++){
        for(int j=0;j<3;j++){
            cin>>a[i][j];
        }
    }
    cout<<Gauss(3,3);
    exit(0);
}


int A[N][N];
int B[N][N];
const long long MOD=998244353;
int main(){
    //testf();

    ios::sync_with_stdio(0);
    int n;
    cin>>n;
    for(int i=0;i<n;i++){
        for(int j=0;j<n;j++){
            cin>>A[i][j];
        }
    }
    for(int i=0;i<n;i++){
        for(int j=0;j<n;j++){
            cin>>B[i][j];
        }
    }
    long long ans_cnt=0;
    for(int j=0;j<n;j++){
        for(int i=0;i<n;i++)
        {
            for(int k=0;k<n;k++)
            {
                a[i][k]=A[i][k];
            }
            a[i][n]=0;
            a[i][i]=(A[i][i]==B[i][j]?0:1);
        }


        int cnt=Gauss(n,n);
        if(cnt>0){
            ans_cnt+=cnt;
        }
        else if(cnt<0){
            cout<<0;
            return 0;
        }
    }
    long long ans=1;
    while(ans_cnt--){
        ans<<=1;
        ans%=MOD;
    }
    cout<<ans;
    return 0;
}
XCPC 文章被收录于专栏

主要记录ICPC的真题

全部评论
[aii==bij]那里打错了,应该是[aii!=bij]
点赞 回复 分享
发布于 2022-10-27 18:55 广东

相关推荐

德科信息 华为OD岗位 20K+ 统招本科
点赞 评论 收藏
分享
2024-12-25 09:09
四川师范大学 运营
点赞 评论 收藏
分享
#我和xx公司的爱恨情仇#&nbsp;怎么会有这么**的公司!实习ld跟我说,在这实习秋招会有很大优势,没太大问题;线下一面二面水的很,手撕都是easy,二面面试官甚至说,你随便手撕个题目就行,找个代码量多的题目,然后我写了一个bfs图算法。主管面也是基本上纯聊天,然后甚至问我预期薪资,我说虽然我有互联网公司offer但是更想来华子,认可企业文化。面试完后,保温电话说根据面评开14a没问题,过了一段时间后去问了对接人,先说11月底开,后来说12月底开,昨天去问,他说你不是签了美团了吗,我们已经发完全部offer了。tmd那你不早说,我还在这等。我问了我们这个部门的其他实习生(三级部门下8个实习生,我们四级部门下就有5个,按理说我们部门应该缺人吧),结果其他实习生全军覆没,之前都收到降温电话要签个其他offer保底,实习生中甚至有人空白三方在allin华子,最逆天的是,其中一个是优秀实习生,他也没开出来。问那个优秀实习生,他说他在这实习时接口人天天给他洗脑说,在这实习只有不想来的,没有泡不出来的(如图1)。我接口人也是这么跟我说的,说我们2012实验室下面都偏预研,部门加班少,我们部门确实还行,而且本身华为比互联网稳定,后期还有股票,退休保留股票一直分红(补充:只有5%的人可以熬到40岁以上退休分股),你看看华为那么多od,人家为什么社招想来华为当od呢,因为华为真的稳定啊(后来想想他们来当od应该是没有更好的选择了吧,xhs上那个清华姚班都来华为当od)。我跟几个实习生已经转投其他部门了,那个优秀实习生去找别的部门hr时,人家问:你优秀实习生也要换部门吗,没遇到你这种情况之前为了选华为还是美团我还纠结了1个多月,现在想想真**,这**公司谁来谁知道,华子稳定个**,这里补充一下,35岁下岗就是华子最早提出来的。还有华为内部转岗的事,后来问了下很多大公司都可以内转,华子内转还要背绩效,去新部门会有很大绩效压力,原部门绩效太差还不能转,****。这**泡池子机制也是遥遥领先,其他互联网公司纷纷效仿。还有那5%公积金真恶心。之前认识一个腾讯提前批哥们,他杭电本科生,hr打电话还恶心他,给他开13a,总包比腾讯少20w,跟他说一大堆什么企业稳定,前景好,技术遥遥领先(图2)另外,还有个签约阿里被华为恶心的(图3)我和腾讯提前批的哥们的故事是真的,可以保证确有其事,图3是道听途说,不保证真实性,但我觉得这**公司真有可能发生这种诈骗故事
好吃的麦乐鸡块:这公司真的恶心,毫无信誉可言
点赞 评论 收藏
分享
评论
4
收藏
分享
牛客网
牛客企业服务