最短路之Dijkstra+堆优化(单源最短路)
优先队列实现对Dijkstra的优化
求单源最短路
#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
#define mod 1000000007
#define IOS ios::sync_with_stdio(false)
#define endl '\n'
using namespace std;
typedef long long ll;
typedef pair<int, int>p;
const int maxn = 205;
int d[maxn];
int n, m;
vector<p>vec[maxn];
void init() {
for (int i = 0;i <= n;++i)d[i] = INF;
for (int i = 0;i < maxn;++i)vec[i].clear();
}
int main() {
while (scanf("%d%d", &n, &m) != EOF) {
init();//初始化
for (int i = 0;i < m;++i) {
//读边
int x, y, z;
scanf("%d%d%d", &x, &y, &z);
vec[x].push_back(make_pair(z, y));
vec[y].push_back(make_pair(z, x));
}
priority_queue<p, vector<p>, greater<p>>pq;//定义由小到大的优先队列
int s, t;
scanf("%d%d", &s, &t);
d[s] = 0;
pq.push(make_pair(d[s], s));//将第一个元素入队
while (!pq.empty()) {
int now = pq.top().second;//now现在是与第一个顶点距离最近的顶点
pq.pop();//通过now实现对其他边的松弛操作
for (int i = 0;i < vec[now].size();++i) {
int v = vec[now][i].second;
if (d[v] > d[now] + vec[now][i].first) {
d[v] = d[now] + vec[now][i].first;
pq.push(make_pair(d[v], v));//将松弛后的边入队
}
}
}
if (d[t] == INF)printf("-1\n");
else printf("%d\n", d[t]);
}
return 0;
}