NC111227 Necklace
Necklace
https://ac.nowcoder.com/acm/problem/111227
Necklace
题目地址:
基本思路:
分情况构造:
如果宝石个数中有两个以上的奇数,那么结果一定为,随便输出一个串即可。
如果宝石个数中仅有一个奇数,那么结果为所有数的,构造考虑输出个回文串,奇数个数的宝石放在回文串的中间位置。
如果宝石个数中没有奇数,那么结果同样为所有数的,由于对称性,只要考虑构造出个回文串。
参考代码:
#pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h> using namespace std; #define IO std::ios::sync_with_stdio(false); cin.tie(0) #define ll long long #define ull unsigned long long #define SZ(x) ((int)(x).size()) #define all(x) (x).begin(), (x).end() #define rep(i, l, r) for (int i = l; i <= r; i++) #define per(i, l, r) for (int i = l; i >= r; i--) #define mset(s, _) memset(s, _, sizeof(s)) #define pb push_back #define pii pair <int, int> #define mp(a, b) make_pair(a, b) #define debug(x) cerr << #x << " = " << x << '\n'; #define pll pair <ll, ll> #define fir first #define sec second #define INF 0x3f3f3f3f #define int ll const int mod = (int)1e9 + 7; void add(int &x, int y) { x += y; if(x >= mod) x -= mod; } void sub(int &x, int y) { x -= y; if(x < 0) x += mod; } inline int read() { int x = 0, neg = 1; char op = getchar(); while (!isdigit(op)) { if (op == '-') neg = -1; op = getchar(); } while (isdigit(op)) { x = 10 * x + op - '0'; op = getchar(); } return neg * x; } inline void print(int x) { if (x < 0) { putchar('-'); x = -x; } if (x >= 10) print(x / 10); putchar(x % 10 + '0'); } const int maxn = 30; int n,a[maxn]; signed main() { IO; cin >> n; int odd = -1, cnt = 0; rep(i, 1, n) { cin >> a[i]; if (a[i] & 1) odd = i, cnt++; } string ans; if (cnt >= 2) { cout << 0 << '\n'; rep(i, 1, n) while (a[i]--) ans += (char) ('a' + i - 1); cout << ans << '\n'; return 0; } int gcd = a[1]; rep(i, 2, n) gcd = __gcd(gcd, a[i]); cout << gcd << '\n'; if (cnt == 0) { string tmp; rep(i, 1, n) { rep(j, 1, a[i] / gcd) tmp += (char) ('a' + i - 1); } per(i, n, 1) { rep(j, 1, a[i] / gcd) tmp += (char) ('a' + i - 1); } rep(i, 1, gcd / 2) ans += tmp; cout << ans << '\n'; } else { string tmp; rep(i, 1, n) { if (i == odd) continue; rep(j, 1, a[i] / gcd / 2) tmp += (char) ('a' + i - 1); } rep(i, 1, a[odd] / gcd) tmp += (char) ('a' + odd - 1); per(i, n, 1) { if (i == odd) continue; rep(j, 1, a[i] / gcd / 2) tmp += (char) ('a' + i - 1); } rep(i, 1, gcd) ans += tmp; cout << ans << '\n'; } return 0; }