ANOVA 方差分析
ANOVA 方差分析
摘自https://blog.csdn.net/lvsehaiyang1993/article/details/80397850
方差分析(Analysis of Variance,简称ANOVA),又称“变异数分析”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。 由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
定义
方差分析(ANOVA)又称“变异数分析”或“F检验”,是由R.A.Fister发明的,用于对两个及两个以上的样本集合的统计特性:平均数差别的显著性检验 。
原理
方差分析的基本假设是 不同样本组的平均数间的差异基本来源有两个:
(1) 实验变量,即样本的主要区别的造成的差异(例如,男和女),称为组间差异。用所有变量在各自己组的均值与所有变量糅合在一块儿总均值之偏差平方和的总和表示,记作SSb,其自由度为dfb。
(2) 随机误差,如测量误差造成的差异或每个个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度为dfw。
总偏差平方和 SSt = SSb + SSw。
组内SSw、组间SSb除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MSw和MSb,一种情况是实验条件没有作用,即各组样本均来自分布相同的同一总体,MSb/MSw≈1。另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。那么,MSb>>MSw(远远大于1)。
MSb/MSw比值构成F分布。用F值与其临界值比较,作为在给定显著性推断各样本是否来自相同的总体的依据。
方差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献大小,从而确定可控变量对研究结果显著性的大小。
举例分析:
下面我们用一个简单的例子来说明方差分析的基本思想:
如某克山病区测得11例克山病患者和13名健康人的血磷值(mmol/L)如下:
患者:0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11
健康人:0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87
问该地克山病患者与健康人的血磷值是否不同?
从以上资料可以看出,24个患者与健康人的血磷值各不相同,如果用离均差平方和(SS)描述其围绕总均值的变异情况,则总变异有以下两个来源:
组内变异,即由于随机误差的原因使得各组内部的血磷值各不相等;
组间变异,即由于克山病的影响使得患者与健康人组的血磷值均值大小不等。
而且:SS总=SS组间+SS组内 v总=v组间+v组内
如果用单位均方(离差平方和除以自由度)代替离差平方和以消除各组样本数不同的影响,则方差分析就是用组间单位均方去除组内单位均方的商(即F值)与1相比较,若F值接近1,则说明各组均值间的差异没有统计学意义,若F值远大于1,则说明各组均值间的差异有统计学意义。实际应用中检验假设成立条件下F值大于给定显著性分布的概率可通过查阅F界值表(方差分析用)获得。