牛客挑战赛44 斐波那契?数列!
斐波那契?数列!
https://ac.nowcoder.com/acm/contest/8051/F
第一问:
根据线性递推序列的特征方程理论,我们可以根据递推方程构造特征多项式,使用特征多项式的根来构造通项方程。
而an^2也可以直接对通项平方,我们发现an^2也是由某个特征多项式的根构成。构造这个特征多项式,进而可以构造出线性递推方程。
因此我们可以断言,an^2也是线性递推的。
对于线性递推方程,我们可以使用BM线性递推黑盒算法求解递推方程的某项。复杂度O(n^2logk),其中n是最少需要传入的项数,k是求k项,复杂度优于矩阵快速幂递推。
第二问:
结论题,答案是fib(n)*fib(n + 1)。矩阵快速幂求解即可。
#include <bits/stdc++.h> using namespace std; #define rep(i,a,n) for (long long i=a;i<n;i++) #define per(i,a,n) for (long long i=n-1;i>=a;i--) #define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end() #define fi first #define se second #define SZ(x) ((long long)(x).size()) typedef vector<long long> VI; typedef long long ll; typedef __int128 Int; typedef pair<long long, long long> PII; const ll mod = 998244353; ll powmod(ll a, ll b) { ll res = 1; a %= mod; assert(b >= 0); for (; b; b >>= 1) { if (b & 1)res = res * a%mod; a = a * a%mod; }return res; } // head Int _, n; namespace linear_seq { const long long N = 10010; ll res[N], base[N], _c[N], _md[N]; vector<long long> Md; void mul(ll *a, ll *b, long long k) { rep(i, 0, k + k) _c[i] = 0; rep(i, 0, k) if (a[i]) rep(j, 0, k) _c[i + j] = (_c[i + j] + a[i] * b[j]) % mod; for (long long i = k + k - 1; i >= k; i--) if (_c[i]) rep(j, 0, SZ(Md)) _c[i - k + Md[j]] = (_c[i - k + Md[j]] - _c[i] * _md[Md[j]]) % mod; rep(i, 0, k) a[i] = _c[i]; } long long solve(Int n, VI a, VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+... // printf("%d\n",SZ(b)); ll ans = 0; Int pnt = 0; Int k = SZ(a); assert(SZ(a) == SZ(b)); rep(i, 0, k) _md[k - 1 - i] = -a[i]; _md[k] = 1; Md.clear(); rep(i, 0, k) if (_md[i] != 0) Md.push_back(i); rep(i, 0, k) res[i] = base[i] = 0; res[0] = 1; while ((Int(1) << pnt) <= n) pnt++; for (Int p = pnt; p >= 0; p--) { mul(res, res, k); if ((n >> p) & 1) { for (long long i = k - 1; i >= 0; i--) res[i + 1] = res[i]; res[0] = 0; rep(j, 0, SZ(Md)) res[Md[j]] = (res[Md[j]] - res[k] * _md[Md[j]]) % mod; } } rep(i, 0, k) ans = (ans + res[i] * b[i]) % mod; if (ans < 0) ans += mod; return ans; } VI BM(VI s) { VI C(1, 1), B(1, 1); long long L = 0, m = 1, b = 1; rep(n, 0, SZ(s)) { ll d = 0; rep(i, 0, L + 1) d = (d + (ll)C[i] * s[n - i]) % mod; if (d == 0) ++m; else if (2 * L <= n) { VI T = C; ll c = mod - d * powmod(b, mod - 2) % mod; while (SZ(C) < SZ(B) + m) C.pb(0); rep(i, 0, SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % mod; L = n + 1 - L; B = T; b = d; m = 1; } else { ll c = mod - d * powmod(b, mod - 2) % mod; while (SZ(C) < SZ(B) + m) C.pb(0); rep(i, 0, SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % mod; ++m; } } return C; } long long gao(VI a, Int n) { VI c = BM(a); c.erase(c.begin()); rep(i, 0, SZ(c)) c[i] = (mod - c[i]) % mod; return solve(n, c, VI(a.begin(), a.begin() + SZ(c))); } }; const int N = 1e5 + 100; Int x, y, z; Int aa[N], sa[N]; void read(Int &x) { x = 0; char c = getchar(); while (c < '0' || c > '9') c = getchar(); while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); } const int M = 3; int m = 2; ll res[M][M], co[M][M], fu[M][M]; void cal(ll a[][M], ll b[][M]) { for (int i = 0; i < 2; i++) { for (int j = 0; j < 2; j++) { for (int k = 0; k < 2; k++) { fu[i][j] = (fu[i][j] + a[i][k] * b[k][j]) % mod; } } } for (int i = 0; i < 2; i++) { for (int j = 0; j < 2; j++) { a[i][j] = fu[i][j]; fu[i][j] = 0; } } } ll qpow(ll n) { memset(res, 0, sizeof(res)); res[0][0] = res[1][1] = 1; memset(co, 0, sizeof(co)); co[0][0] = co[0][1] = co[1][0] = 1; while (n > 0) { if (n & 1) cal(res, co); cal(co, co); n /= 2; } return res[1][0]; } int main() { read(n); read(sa[1]); read(sa[2]); read(sa[3]); read(x); read(y); read(z); aa[1] = sa[1] * sa[1] % mod; aa[2] = (aa[1] + sa[2] * sa[2]) % mod; aa[3] = (aa[2] + sa[3] * sa[3]) % mod; for (int i = 4; i <= 500; i++) { sa[i] = x * sa[i - 1] + y * sa[i - 2] + z * sa[i - 3]; sa[i] %= mod; aa[i] = aa[i - 1] + sa[i] * sa[i]; aa[i] %= mod; //cout << i << " " << ll(sa[i]) << " " << ll(aa[i]) << endl; } VI v; for (int i = 1; i <= 500; i++) v.push_back(aa[i]); printf("%lld\n", linear_seq::gao(v, n - 1)); int q, n; scanf("%d", &q); while (q--) { scanf("%d", &n); ll a = qpow(n), b = qpow(n + 1); // cout << a << " " << b << endl; printf("%lld\n", a * b % mod); } }