Hadoop-Mapreduce实战(流量汇总案例)

流量汇总案例

  • 需求1:统计手机号耗费的总上行流量、下行流量、总流量(序列化)

    统计每一个手机号耗费的总上行流量、下行流量、总流量

  • 数据准备

原始数据格式:
时间戳、电话号码、基站的物理地址、访问网址的ip、网站域名、数据包、接包数、上行/传流量、下行/载流量、响应码

输出数据格式:
1356·0436666 	1116	954 	2070	手机号码		上行流量     下行流量	总流量
  • 分析

    • 基本思路

    • Map阶段:

      • 读取一行数据,切分字段
      • 抽取手机号、上行流量、下行流量
      • 以手机号为key,bean对象为value输出,即context.write(手机号,bean);
    • Reduce阶段:

      • 累加上行流量和下行流量得到总流量。
      • 实现自定义的bean来封装流量信息,并将bean作为map输出的key来传输
      • MR程序在处理数据的过程中会对数据排序(map输出的kv对传输到reduce之前,会排序),排序的依据是map输出的key

      所以,我们如果要实现自己需要的排序规则,则可以考虑将排序因素放到key中,让key实现接口:WritableComparable。然后重写key的compareTo方法。

  • 编写mapreduce程序

    • 编写流量统计的bean对象
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.Writable;

// 1 实现writable接口
public class FlowBean implements Writable{
   

	private long upFlow ;
	private long downFlow;
	private long sumFlow;
	
	//2 反序列化时,需要反射调用空参构造函数,所以必须有
	public FlowBean() {
   
		super();
	}

	public FlowBean(long upFlow, long downFlow) {
   
		super();
		this.upFlow = upFlow;
		this.downFlow = downFlow;
		this.sumFlow = upFlow + downFlow;
	}
	
	//3 写序列化方法
	@Override
	public void write(DataOutput out) throws IOException {
   
		out.writeLong(upFlow);
		out.writeLong(downFlow);
		out.writeLong(sumFlow);
	}
	
	//4 反序列化方法
	//5 反序列化方法读顺序必须和写序列化方法的写顺序必须一致
	@Override
	public void readFields(DataInput in) throws IOException {
   
		this.upFlow  = in.readLong();
		this.downFlow = in.readLong();
		this.sumFlow = in.readLong();
	}

	// 6 编写toString方法,方便后续打印到文本
	@Override
	public String toString() {
   
		return upFlow + "\t" + downFlow + "\t" + sumFlow;
	}

	public long getUpFlow() {
   
		return upFlow;
	}

	public void setUpFlow(long upFlow) {
   
		this.upFlow = upFlow;
	}

	public long getDownFlow() {
   
		return downFlow;
	}

	public void setDownFlow(long downFlow) {
   
		this.downFlow = downFlow;
	}

	public long getSumFlow() {
   
		return sumFlow;
	}

	public void setSumFlow(long sumFlow) {
   
		this.sumFlow = sumFlow;
	}

}

编写mapper

import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class FlowCountMapper extends Mapper<LongWritable, Text, Text, FlowBean>{
   
	
	FlowBean v = new FlowBean();
	Text k = new Text();
	
	@Override
	protected void map(LongWritable key, Text value, Context context)
			throws IOException, InterruptedException {
   
		
		// 1 获取一行
		String line = value.toString();
		
		// 2 切割字段
		String[] fields = line.split("\t");
		
		// 3 封装对象
		// 取出手机号码
		String phoneNum = fields[1];
		// 取出上行流量和下行流量
		long upFlow = Long.parseLong(fields[fields.length - 3]);
		long downFlow = Long.parseLong(fields[fields.length - 2]);
		
		v.set(downFlow, upFlow);
		
		// 4 写出
		context.write(new Text(phoneNum), new FlowBean(upFlow, downFlow));
	}
}

编写reducer

import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class FlowCountReducer extends Reducer<Text, FlowBean, Text, FlowBean> {
   

	@Override
	protected void reduce(Text key, Iterable<FlowBean> values, Context context)
			throws IOException, InterruptedException {
   

		long sum_upFlow = 0;
		long sum_downFlow = 0;

		// 1 遍历所用bean,将其中的上行流量,下行流量分别累加
		for (FlowBean flowBean : values) {
   
			sum_upFlow += flowBean.getSumFlow();
			sum_downFlow += flowBean.getDownFlow();
		}

		// 2 封装对象
		FlowBean resultBean = new FlowBean(sum_upFlow, sum_downFlow);
		
		// 3 写出
		context.write(key, resultBean);
	}
}

编写驱动类

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class FlowsumDriver {
   

	public static void main(String[] args) throws IllegalArgumentException, IOException, ClassNotFoundException, InterruptedException {
   
		
		// 1 获取配置信息,或者job对象实例
		Configuration configuration = new Configuration();
		Job job = Job.getInstance(configuration);

		// 6 指定本程序的jar包所在的本地路径
		job.setJarByClass(FlowsumDriver.class);

		// 2 指定本业务job要使用的mapper/Reducer业务类
		job.setMapperClass(FlowCountMapper.class);
		job.setReducerClass(FlowCountReducer.class);

		// 3 指定mapper输出数据的kv类型
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(FlowBean.class);

		// 4 指定最终输出的数据的kv类型
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(FlowBean.class);
		
		// 5 指定job的输入原始文件所在目录
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));

		// 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
		boolean result = job.waitForCompletion(true);
		System.exit(result ? 0 : 1);
	}
}
  • 需求2:将统计结果按照手机归属地不同省份输出到不同文件中(Partitioner)

    需求:将统计结果按照手机归属地不同省份输出到不同文件中(分区)

    • 数据准备
    • 分析
      • Mapreduce中会将map输出的kv对,按照相同key分组,然后分发给不同的reducetask。默认的分发规则为:根据key的hashcode%reducetask数来分发
  • 如果要按照我们自己的需求进行分组,则需要改写数据分发(分组)组件Partitioner自定义一个CustomPartitioner继承抽象类:Partitioner

    • 在job驱动中,设置自定义partitioner: job.setPartitionerClass(CustomPartitioner.class)
  • 在需求1的基础上,增加一个分区类

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

public class ProvincePartitioner extends Partitioner<Text, FlowBean> {
   

	@Override
	public int getPartition(Text key, FlowBean value, int numPartitions) {
   
		// 1 获取电话号码的前三位
		String preNum = key.toString().substring(0, 3);
		//注:如果设置的分区数小于下面的分区数,如3、则最后一个分区混数据分区
        //注:如何设置的分区数大于下面的分区数,如5,则报错
		int partition = 4;
		
		// 2 判断是哪个省
		if ("136".equals(preNum)) {
   
			partition = 0;
		}else if ("137".equals(preNum)) {
   
			partition = 1;
		}else if ("138".equals(preNum)) {
   
			partition = 2;
		}else if ("139".equals(preNum)) {
   
			partition = 3;
		}

		return partition;
	}
}

在驱动函数中增加自定义数据分区设置和reduce task设置

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class FlowsumDriver {
   

	public static void main(String[] args) throws IllegalArgumentException, IOException, ClassNotFoundException, InterruptedException {
   
		
		// 1 获取配置信息,或者job对象实例
		Configuration configuration = new Configuration();
		Job job = Job.getInstance(configuration);

		// 6 指定本程序的jar包所在的本地路径
		job.setJarByClass(FlowsumDriver.class);

		// 2 指定本业务job要使用的mapper/Reducer业务类
		job.setMapperClass(FlowCountMapper.class);
		job.setReducerClass(FlowCountReducer.class);

		// 3 指定mapper输出数据的kv类型
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(FlowBean.class);

		// 4 指定最终输出的数据的kv类型
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(FlowBean.class);

		// 8 指定自定义数据分区
		job.setPartitionerClass(ProvincePartitioner.class);
		// 9 同时指定相应数量的reduce task
		job.setNumReduceTasks(5);
		
		// 5 指定job的输入原始文件所在目录
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));

		// 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
		boolean result = job.waitForCompletion(true);
		System.exit(result ? 0 : 1);
	}
}

需求3:将统计结果按照总流量倒序排序(全排序)

根据需求1产生的结果再次对总流量进行排序。

  • 数据准备
  • 分析
    • 把程序分两步走,第一步正常统计总流量,第二步再把结果进行排序
    • context.write(总流量,手机号)
    • FlowBean实现WritableComparable接口重写compareTo方法
@Override
public int compareTo(FlowBean o) {
   
	// 倒序排列,从大到小
	return this.sumFlow > o.getSumFlow() ? -1 : 1;
}

代码实现

  • FlowBean对象在在需求1基础上增加了比较功能
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable;

public class FlowBean implements WritableComparable<FlowBean> {
   

	private long upFlow;
	private long downFlow;
	private long sumFlow;

	// 反序列化时,需要反射调用空参构造函数,所以必须有
	public FlowBean() {
   
		super();
	}

	public FlowBean(long upFlow, long downFlow) {
   
		super();
		this.upFlow = upFlow;
		this.downFlow = downFlow;
		this.sumFlow = upFlow + downFlow;
	}

	public void set(long upFlow, long downFlow) {
   
		this.upFlow = upFlow;
		this.downFlow = downFlow;
		this.sumFlow = upFlow + downFlow;
	}

	public long getSumFlow() {
   
		return sumFlow;
	}

	public void setSumFlow(long sumFlow) {
   
		this.sumFlow = sumFlow;
	}

	public long getUpFlow() {
   
		return upFlow;
	}

	public void setUpFlow(long upFlow) {
   
		this.upFlow = upFlow;
	}

	public long getDownFlow() {
   
		return downFlow;
	}

	public void setDownFlow(long downFlow) {
   
		this.downFlow = downFlow;
	}

	/** * 序列化方法 * @param out * @throws IOException */
	@Override
	public void write(DataOutput out) throws IOException {
   
		out.writeLong(upFlow);
		out.writeLong(downFlow);
		out.writeLong(sumFlow);
	}

	/** * 反序列化方法 注意反序列化的顺序和序列化的顺序完全一致 * @param in * @throws IOException */
	@Override
	public void readFields(DataInput in) throws IOException {
   
		upFlow = in.readLong();
		downFlow = in.readLong();
		sumFlow = in.readLong();
	}

	@Override
	public String toString() {
   
		return upFlow + "\t" + downFlow + "\t" + sumFlow;
	}

	@Override
	public int compareTo(FlowBean o) {
   
		// 倒序排列,从大到小
		return this.sumFlow > o.getSumFlow() ? -1 : 1;
	}
}

编写mapper

import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class FlowCountSortMapper extends Mapper<LongWritable, Text, FlowBean, Text>{
   
	FlowBean k= new FlowBean();
	Text v = new Text();

	@Override
	protected void map(LongWritable key, Text value, Context context)
			throws IOException, InterruptedException {
   

		// 1 获取一行
		String line = value.toString();
		
		// 2 截取
		String[] fields = line.split("\t");
		
		// 3 封装对象
		String phoneNbr = fields[0];
		long upFlow = Long.parseLong(fields[1]);
		long downFlow = Long.parseLong(fields[2]);
		
		k.set(upFlow, downFlow);
		v.set(phoneNbr);
		
		// 4 输出
		context.write(k, v);
	}
}

编写reduce

import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class FlowCountSortReducer extends Reducer<FlowBean, Text, Text, FlowBean>{
   

	@Override
	protected void reduce(FlowBean key, Iterable<Text> values, Context context)
			throws IOException, InterruptedException {
   
		
		// 循环输出,避免总流量相同情况
		for (Text text : values) {
   
			context.write(text, key);
		}
	}
}

编写driver

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class FlowCountSortDriver {
   

	public static void main(String[] args) throws ClassNotFoundException, IOException, InterruptedException {
   
		
		// 1 获取配置信息,或者job对象实例
		Configuration configuration = new Configuration();
		Job job = Job.getInstance(configuration);

		// 6 指定本程序的jar包所在的本地路径
		job.setJarByClass(FlowCountSortDriver.class);

		// 2 指定本业务job要使用的mapper/Reducer业务类
		job.setMapperClass(FlowCountSortMapper.class);
		job.setReducerClass(FlowCountSortReducer.class);

		// 3 指定mapper输出数据的kv类型
		job.setMapOutputKeyClass(FlowBean.class);
		job.setMapOutputValueClass(Text.class);

		// 4 指定最终输出的数据的kv类型
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(FlowBean.class);

		// 5 指定job的输入原始文件所在目录
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));
		
		// 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
		boolean result = job.waitForCompletion(true);
		System.exit(result ? 0 : 1);
	}
}

需求4:不同省份输出文件内部排序(部分排序)

要求每个省份手机号输出的文件中按照总流量内部排序。

  • 分析:基于需求3,增加自定义分区类即可。
  • 案例实操
    • 增加自定义分区类
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

public class ProvincePartitioner extends Partitioner<FlowBean, Text> {
   

	@Override
	public int getPartition(FlowBean key, Text value, int numPartitions) {
   
		
		// 1 获取手机号码前三位
		String preNum = value.toString().substring(0, 3);
		
		int partition = 4;
		
		// 2 根据手机号归属地设置分区
		if ("136".equals(preNum)) {
   
			partition = 0;
		}else if ("137".equals(preNum)) {
   
			partition = 1;
		}else if ("138".equals(preNum)) {
   
			partition = 2;
		}else if ("139".equals(preNum)) {
   
			partition = 3;
		}

	return partition;
	}
}

在驱动类中添加分区类

// 加载自定义分区类
job.setPartitionerClass(FlowSortPartitioner.class);
// 设置Reducetask个数
	job.setNumReduceTasks(5);
全部评论

相关推荐

2024-12-04 14:01
南京理工大学 Python
thanker:byd985废物收容所
点赞 评论 收藏
分享
评论
点赞
收藏
分享
牛客网
牛客企业服务