2020牛客暑期多校训练营(第三场)

A. Clam and Fish

传送门

题意:

有 n 个阶段来钓鱼,每一阶段有四个状态:

(0)没有鱼,没有蛤蜊

(1)没有鱼,有一个蛤蜊

(2)有一条鱼,没有蛤蜊

(3) 有一条鱼,有一个蛤蜊

在每一阶段你可以采取以下四个操作之一:

(1)如果该阶段有一个蛤蜊,用蛤蜊制作一个鱼饵

(2)如果该阶段有一条鱼,可以直接钓(不需要鱼饵)

(3)如果还有鱼饵,不管有没有鱼,都可以使用鱼饵钓到一条鱼

(4)啥也不干

给定 n 个阶段的状态,问最多能钓多少鱼

思路:

状态2、3直接钓,状态0用鱼饵钓(如果有鱼饵的话),状态1判断当前鱼饵个数和后面没有鱼的状态的个数(即0和1),鱼饵多的话就钓鱼,鱼饵少的话就做鱼饵

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long ll;
const double eps = 1e-3;
const int inf = 0x3f3f3f3f;
const int N = 2e6 + 10;

int cn[N];
char s[N];

int main()
{
    int t, n;
    scanf("%d", &t);
    while(t--) {
        scanf("%d%s", &n, s);
        int ans = 0, now = 0;
        cn[n + 1] = 0;
        for(int i = n; i >= 0; --i) {
            cn[i] = cn[i + 1];
            if(s[i] == '0' || s[i] == '1') cn[i]++;
        }
        for(int i = 0; i < n; ++i) {
            if(s[i] == '2' || s[i] == '3') ans++;
            if(s[i] == '0') {
                if(now) now--, ans++;
            }
            if(s[i] == '1') {
                if(now == 0 || cn[i] > now) now++;
                else now--, ans++;
            }
        }
        printf("%d\n", ans);
    }
    return 0;
}

BClassical String Problem 

传送门

题意:

给一个字符串和 q 个操作,操作分为两种:M操作修改当前字符串,x > 0时将字符串左边 x 个字符全部移到最后,x < 0时将字符串右边 x 个字符全部移到开头;A 操作询问当前字符串的第 x 个字符

思路:

将字符串循环一次,每次M操作修改当前字符串的起始下标并取模,A操作O(1)访问,卡cin...

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long ll;
const double eps = 1e-11;
const int inf = 0x3f3f3f3f;
const int N = 4e6 + 5;
char s[N], tmp[N];
 
int main() {
    char c;
    int q, x, id = 0;
    scanf("%s%d", s, &q);
    int len = strlen(s);
    strcpy(tmp, s);
    strcat(s, tmp);
    while(q--) {
        getchar();
        scanf("%c%d", &c, &x);
        if(c == 'A')
            printf("%c\n", s[id + x - 1]);
        else {
            if(x > 0) {
                id += x;
                id %= len;
            }
            else {
                x *= (-1);
                id += len - x;
                id %= len;
            }
        }
    }
    return 0;
}

C. Operation Love

 传送门

题意:顺时针或逆时针给出手印各点的坐标,问是左手还是右手

思路1:找到长度为9的边和它的下一个点,由这三个点计算叉乘判断顺逆时针,然后求下一条边的长度,顺时针的话下一条边是6是右手,下一条边是8是左手;逆时针相反。

-----------------------------------------小科普时间-------------------------------------------

判断三点是顺时针还是逆时针方向:

p1 = (x1, y1);    p2 = (x2, y2);    p3 = (x3, y3);

求向量     p12 = (x2 - x1, y2 - y1);   p23 = (x3 - x2, y3 - y2);

求叉乘 p12 × p23 = (x2 - x1) * (y3 - y2) - (y2 - y1) * (x3 - x2)

> 0,p1 - p2 - p3为逆时针

< 0,p1 - p2 - p3为顺时针

= 0,三点共线

--------------------------------------------------------------------------------------------------

由于边的大小就这么几种,判相等的时候把eps设大一点....eps小于1e-5就卡了淦   qaq

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long ll;
const double eps = 1e-3;
const int inf = 0x3f3f3f3f;
const int N = 45;
 
struct point
{
    double x, y;
} s[N];
 
double dis(point a, point b)
{
    return 1.0 * sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
 
double axb(point A, point B, point C)
{
    return (B.x-A.x)*(C.y-B.y)-(B.y-A.y)*(C.x-B.x);
}

int main()
{
    int t;
    scanf("%d", &t);
    while(t--)
    {
        for(int i = 1; i <= 20; ++i)
        {
            scanf("%lf%lf", &s[i].x, &s[i].y);
            s[i + 20] = s[i];
        }
        int q1, q2, q3;
        for(int i = 1; i <= 20; i++)
        {
            double disc = 1.0 * dis(s[i], s[i+1]);
            if(fabs(disc - 9.0) < eps)
            {
                q1 = i;
                q2 = i + 1;
                q3 = i + 2;
                break;
            }
        }
        bool flag = 0;  ///左1右0
        if(axb(s[q1], s[q2], s[q3]) < 0)
        {
            for(int i = 1; i <= 20; ++i)
            {
                double dis1 = dis(s[i], s[i+1]);
                if(fabs(dis1 - 9.0) < eps)
                {
                    double dis2 = dis(s[i + 1], s[i + 2]);
                    if(fabs(dis2 - 8.0) < eps)
                        flag = 1;
                    break;
                }
            }
        }
        else
        {
            for(int i = 1; i <= 20; i++)
            {
                double dis1 = dis(s[i], s[i+1]);
                if(fabs(dis1 - 9.0) < eps)
                {
                    double dis2 = dis(s[i + 1], s[i + 2]);
                    if(fabs(dis2 - 6.0) < eps)
                        flag = 1;
                    break;
                }
            }
        }
        if(flag)
            cout<<"left"<<'\n';
        else
            cout<<"right"<<'\n';
    }
}

思路2(很笨):发现手印中只有一条长度为9的边、一条长度为8的边和一条长度为6的边,O(n)找到长度为9的边,根据这条边两点的位置关系和下一点和这条边的位置关系(在9这条边的上方还是下方)判断是顺时针还是逆时针,下面同上。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long ll;
const double eps = 1e-5;
const int inf = 0x3f3f3f3f;
const int N = 45;
 
struct point
{
    double x, y;
} s[N];
 
double dis(point a, point b)
{
    return 1.0 * sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
 
bool judge(point a, point b, point c)   ///点c和直线a,b的位置关系
{
    double k = 1.0 * (a.y - b.y) / (a.x - b.x);
    if((c.x - b.x) * k + b.y > c.y) ///c在直线下方
        return 0;
    return 1;   ///c在直线上方
}
 
int main()
{
    int t;
    scanf("%d", &t);
    while(t--)
    {
        for(int i = 1; i <= 20; ++i)
        {
            scanf("%lf%lf", &s[i].x, &s[i].y);
            s[i + 20] = s[i];
        }
        bool flag;  ///左1右0
        for(int i = 1; i <= 20; ++i)
        {
            double dis1 = dis(s[i], s[i + 1]);
            if(fabs(dis1 - 9.0) < eps)
            {
                double dis2 = dis(s[i + 1], s[i + 2]);  ///下一条边的长度 不是8就是6
                if(fabs(s[i].x - s[i + 1].x) < eps)    ///9与y轴平行
                {
                    if(s[i].x > s[i + 2].x) ///下一点在左方
                    {
                        if(s[i].y < s[i + 1].y) ///9正
                        {
                            if(fabs(dis2 - 6.0) < eps)  ///6
                                flag = 1;
                            else
                                flag = 0;
                        }
                        else    ///9反
                        {
                            if(fabs(dis2 - 6.0) < eps)  ///6
                                flag = 0;
                            else
                                flag = 1;
                        }
                    }
                    else    ///右方
                    {
                        if(s[i].y < s[i + 1].y) ///9正
                        {
                            if(fabs(dis2 - 6.0) < eps)  ///6
                                flag = 0;
                            else
                                flag = 1;
                        }
                        else    ///9反
                        {
                            if(fabs(dis2 - 6.0) < eps)  ///6
                                flag = 1;
                            else
                                flag = 0;
                        }
                    }
                }
                else
                {
                    if(judge(s[i], s[i + 1], s[i + 2])) ///下一个点在线段上方
                    {
                        if(s[i].x < s[i + 1].x) ///9正着
                        {
                            if(fabs(dis2 - 6.0) < eps)  ///6
                                flag = 1;
                            else
                                flag = 0;
                        }
                        else    ///9反着
                        {
                            if(fabs(dis2 - 6.0) < eps)  ///6
                                flag = 0;
                            else
                                flag = 1;
                        }
                    }
                    else    ///下方
                    {
                        if(s[i].x < s[i + 1].x) ///9正着
                        {
                            if(fabs(dis2 - 6.0) < eps)  ///6
                                flag = 0;
                            else
                                flag = 1;
                        }
                        else    ///9反着
                        {
                            if(fabs(dis2 - 6.0) < eps)  ///6
                                flag = 1;
                            else
                                flag = 0;
                        }
                    }
                }
                break;
            }
        }
        if(flag)
            cout<<"left"<<'\n';
        else
            cout<<"right"<<'\n';
    }
    return 0;
}

F. Fraction Construction Problem

传送门

题意:

给定a, b,求一组c, d, e, f 满足

思路:

(原题解做法)

(1)若 gcd(a, b) != 1,取 a, b 的任意一个大于1的公因数 g,那么 a / g,b / g,1,b / g 就满足题意

(2)若gcd(a, b) == 1,如果 b 的相异质因数只有一个,无解,原因:

(3)若gcd(a, b) == 1,b的相异质因数多于1个,可以取一组 d 和 f ,使 d * f == b 且 gcd(d, f) == 1,这样就变成了求解 c * f - d * e = a,由于gcd(d, f) == 1,exgcd 求出 c * f - d * e = 1的一组 c, e 后乘以 a 即可

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll inf = 0x3f3f3f3f3f3f3f3f;
const double PI = acos(-1.0);
const int mod = 1e9 + 7;
const int N = 2e6 + 5;

ll pri[N], tot, cn[N], bp[N];    //cn[i]:i的不同质因数的个数; bp[i]:i的一个质因数
bool vis[N];
void init() {
    tot = 0;
    memset(vis, 0, sizeof(vis));
    memset(cn, 0, sizeof(cn));
    vis[0] = vis[1] = 1;
    for(int i = 2; i < N; ++i) {
        if(!vis[i]) {
            cn[i]++;
            bp[i] = i;
            pri[++tot] = i;
            for(int j = i + i; j < N; j += i) {
                vis[j] = 1;
                cn[j]++;
                bp[j] = i;
            }
        }
    }
}

ll exgcd(ll a, ll b, ll &x, ll &y) {
    if(a == 0 && b == 0)
        return -1;
    if(b == 0) {
        x = 1;
        y = 0;
        return a;
    }
    ll d = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

ll gcd(ll a, ll b) {
    return b ? gcd(b, a % b) : a;
}

int main() {
    init();
    ll t, a, b, c, d, e, f;
    scanf("%lld", &t);
    while(t--) {
        scanf("%lld%lld", &a, &b);
        if(b == 1) {
            printf("-1 -1 -1 -1\n");
            continue;
        }
        ll gd = gcd(a, b);
        if(gd > 1) {
            printf("%lld %lld %lld %lld\n", a / gd + 1, b / gd, 1, b / gd);
            continue;
        }
        if(cn[b] == 1) {
            printf("-1 -1 -1 -1\n");
            continue;
        }
        ll tmp = b;
        d = 1;
        while(tmp % bp[b] == 0) {
            tmp /= bp[b];
            d *= bp[b];
        }
        f = b / d;
        gd = exgcd(f, d, c, e);
        e = -e;
        while(c < 0 || e < 0) {
            c += d;
            e += f;
        }
        c *= a;
        e *= a;
        printf("%lld %lld %lld %lld\n", c, d, e, f);
    }
    return 0;
}

L. Problem L is the Only Lovely Problem

传送门

~~~~温暖的签到

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long ll;
const double eps = 1e-11;
const int inf = 0x3f3f3f3f;
const int N = 2e5 + 5;
 
int main()
{
    string s;
    while(getline(cin, s))
    {
        if(tolower(s[0]) == 'l'
                && tolower(s[1]) == 'o'
                && tolower(s[2]) == 'v'
                && tolower(s[3]) == 'e'
                && tolower(s[4]) == 'l'
                && tolower(s[5]) == 'y')
            cout<<"lovely"<<'\n';
        else
            cout<<"ugly"<<'\n';
    }
    return 0;
}

 

全部评论

相关推荐

无情咸鱼王的秋招日记之薛定谔的Offer:好拒信,偷了,希望有机会用到
点赞 评论 收藏
分享
评论
点赞
收藏
分享
牛客网
牛客企业服务