Meisell-Lehmer大素数计数 求第i个素数 + 二分
数据到1e11,用Meisell-Lehmer能跑到2、3秒,但是据说还有一种Deleglise Rivat的算法特别快,大概1e16差不多才3、4秒的样子,但是网上没有找到板子,所以就发一个Meisell-Lehmer的模板,1e11内的数差不多都能在5秒内处理完:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 5e6 + 2;
bool np[N];
int prime[N], pi[N];
int getprime() {
int cnt = 0;
np[0] = np[1] = true;
pi[0] = pi[1] = 0;
for(int i = 2; i < N; ++i) {
if(!np[i]) prime[++cnt] = i;
pi[i] = cnt;
for(int j = 1; j <= cnt && i * prime[j] < N; ++j) {
np[i * prime[j]] = true;
if(i % prime[j] == 0) break;
}
}
return cnt;
}
const int M = 7;
const int PM = 2 * 3 * 5 * 7 * 11 * 13 * 17;
int phi[PM + 1][M + 1], sz[M + 1];
void init() {
getprime();
sz[0] = 1;
for(int i = 0; i <= PM; ++i) phi[i][0] = i;
for(int i = 1; i <= M; ++i) {
sz[i] = prime[i] * sz[i - 1];
for(int j = 1; j <= PM; ++j) {
phi[j][i] = phi[j][i - 1] - phi[j / prime[i]][i - 1];
}
}
}
int sqrt2(LL x) {
LL r = (LL)sqrt(x - 0.1);
while(r * r <= x) ++r;
return int(r - 1);
}
int sqrt3(LL x) {
LL r = (LL)cbrt(x - 0.1);
while(r * r * r <= x) ++r;
return int(r - 1);
}
LL getphi(LL x, int s) {
if(s == 0) return x;
if(s <= M) return phi[x % sz[s]][s] + (x / sz[s]) * phi[sz[s]][s];
if(x <= prime[s]*prime[s]) return pi[x] - s + 1;
if(x <= prime[s]*prime[s]*prime[s] && x < N) {
int s2x = pi[sqrt2(x)];
LL ans = pi[x] - (s2x + s - 2) * (s2x - s + 1) / 2;
for(int i = s + 1; i <= s2x; ++i) {
ans += pi[x / prime[i]];
}
return ans;
}
return getphi(x, s - 1) - getphi(x / prime[s], s - 1);
}
LL getpi(LL x) {
if(x < N) return pi[x];
LL ans = getphi(x, pi[sqrt3(x)]) + pi[sqrt3(x)] - 1;
for(int i = pi[sqrt3(x)] + 1, ed = pi[sqrt2(x)]; i <= ed; ++i) {
ans -= getpi(x / prime[i]) - i + 1;
}
return ans;
}
LL lehmer_pi(LL x) {
if(x < N) return pi[x];
int a = (int)lehmer_pi(sqrt2(sqrt2(x)));
int b = (int)lehmer_pi(sqrt2(x));
int c = (int)lehmer_pi(sqrt3(x));
LL sum = getphi(x, a) + LL(b + a - 2) * (b - a + 1) / 2;
for (int i = a + 1; i <= b; i++) {
LL w = x / prime[i];
sum -= lehmer_pi(w);
if (i > c) continue;
LL lim = lehmer_pi(sqrt2(w));
for (int j = i; j <= lim; j++) {
sum -= lehmer_pi(w / prime[j]) - (j - 1);
}
}
return sum;
}
int main() {
init();
LL n;
while(cin >> n) {
cout << lehmer_pi(n) << endl;
}
return 0;
}
下面转自https://blog.csdn.net/qq_37785469/article/details/72848488
1473: L先生与质数V3
Time Limit: 1 Sec Memory Limit: 128 MB
Submit: 1348 Solved: 147
[ Submit][ Status][ Web Board]
Description
在解决了上一个质数问题之后,L先生依然不甘心,他还想计算下更多范围内的质数,你能帮助他吗?
Input
有多组测试例。(测试例数量<70)
每个测试例一行,输入一个数字n(0<n<=3000000),输入0表示结束。
Output
输出测试例编号和第N个质数。
Case X: Y
Sample Input
1
2
3
4
10
100
0
Sample Output
Case 1: 2
Case 2: 3
Case 3: 5
Case 4: 7
Case 5: 29
Case 6: 541
求第n个素数,meissel lehmer打出素数个数之后二分
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
typedef long long LL;
const int N = 5e6 + 2;//通过知道前面的n^1/3的=质数可以推断后面n^2/3的质数所以可以适当减小
bool np[N];
int prime[N], pi[N];
int getprime()
{
int cnt = 0;
np[0] = np[1] = true;
pi[0] = pi[1] = 0;
for(int i = 2; i < N; ++i)
{
if(!np[i]) prime[++cnt] = i;
pi[i] = cnt;
for(int j = 1; j <= cnt && i * prime[j] < N; ++j)
{
np[i * prime[j]] = true;
if(i % prime[j] == 0) break;
}
}
return cnt;
}
const int M = 7;//为了减小内存可以不过是质数
const int PM = 2 * 3 * 5 * 7 * 11 * 13 * 17;//为了减小内存可以不过要按质数减小如去掉17
int phi[PM + 1][M + 1], sz[M + 1];
void init()
{
getprime();
sz[0] = 1;
for(int i = 0; i <= PM; ++i) phi[i][0] = i;
for(int i = 1; i <= M; ++i)
{
sz[i] = prime[i] * sz[i - 1];
for(int j = 1; j <= PM; ++j) phi[j][i] = phi[j][i - 1] - phi[j / prime[i]][i - 1];
}
}
int sqrt2(LL x)
{
LL r = (LL)sqrt(x - 0.1);
while(r * r <= x) ++r;
return int(r - 1);
}
int sqrt3(LL x)
{
LL r = (LL)cbrt(x - 0.1);
while(r * r * r <= x) ++r;
return int(r - 1);
}
LL getphi(LL x, int s)
{
if(s == 0) return x;
if(s <= M) return phi[x % sz[s]][s] + (x / sz[s]) * phi[sz[s]][s];
if(x <= prime[s]*prime[s]) return pi[x] - s + 1;
if(x <= prime[s]*prime[s]*prime[s] && x < N)
{
int s2x = pi[sqrt2(x)];
LL ans = pi[x] - (s2x + s - 2) * (s2x - s + 1) / 2;
for(int i = s + 1; i <= s2x; ++i) ans += pi[x / prime[i]];
return ans;
}
return getphi(x, s - 1) - getphi(x / prime[s], s - 1);
}
LL getpi(LL x)
{
if(x < N) return pi[x];
LL ans = getphi(x, pi[sqrt3(x)]) + pi[sqrt3(x)] - 1;
for(int i = pi[sqrt3(x)] + 1, ed = pi[sqrt2(x)]; i <= ed; ++i) ans -= getpi(x / prime[i]) - i + 1;
return ans;
}
LL lehmer_pi(LL x)
{
if(x < N) return pi[x];
int a = (int)lehmer_pi(sqrt2(sqrt2(x)));
int b = (int)lehmer_pi(sqrt2(x));
int c = (int)lehmer_pi(sqrt3(x));
LL sum = getphi(x, a) +(LL)(b + a - 2) * (b - a + 1) / 2;
for (int i = a + 1; i <= b; i++)
{
LL w = x / prime[i];
sum -= lehmer_pi(w);
if (i > c) continue;
LL lim = lehmer_pi(sqrt2(w));
for (int j = i; j <= lim; j++) sum -= lehmer_pi(w / prime[j]) - (j - 1);
}
return sum;
}
int main()//因为统计了质数个数可以用在线判断用二分
{
LL n,l,r,mid;
int sum=1;
init();
while(scanf("%lld",&n)!=EOF)
{
if(n==0)
break;
l=1,r=50000000;
while(l<r) {
mid=(l+r)/2;
LL t=lehmer_pi(mid);
if(t>=n)
r=mid;
else
l=mid+1;
}
printf("Case %d: %lld\n",sum++,l);
}
return 0;
}
若内存减小到16M(如题)
1489: L先生与质数V4(应各位菊苣要求)
Time Limit: 1 Sec Memory Limit: 16 MB
Submit: 409 Solved: 93
[ Submit][ Status][ Web Board]
Description
在解决了上一个质数问题之后,L先生依然不甘心,他还想计算下更多范围内的质数,你能帮助他吗?(没错这题题面和V3一毛一样)
Input
有多组测试例。(测试例数量<70)
每个测试例一行,输入一个数字n(0<n<=3000000),输入0表示结束。
Output
输出测试例编号和第N个质数。
Case X: Y
Sample Input
1
2
3
4
10
100
0
Sample Output
Case 1: 2
Case 2: 3
Case 3: 5
Case 4: 7
Case 5: 29
Case 6: 541
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
typedef long long LL;
const int N = 9e3;//通过知道前面的n^1/3的=质数可以推断后面n^2/3的质数所以可以适当减小
bool np[N];
int prime[N], pi[N];
int getprime()
{
int cnt = 0;
np[0] = np[1] = true;
pi[0] = pi[1] = 0;
for(int i = 2; i < N; ++i)
{
if(!np[i]) prime[++cnt] = i;
pi[i] = cnt;
for(int j = 1; j <= cnt && i * prime[j] < N; ++j)
{
np[i * prime[j]] = true;
if(i % prime[j] == 0) break;
}
}
return cnt;
}
const int M = 2;//为了减小内存可以不过是质数
const int PM = 2 * 3 * 5 ;//为了减小内存可以不过要按质数减小如去掉17
int phi[PM + 1][M + 1], sz[M + 1];
void init()
{
getprime();
sz[0] = 1;
for(int i = 0; i <= PM; ++i) phi[i][0] = i;
for(int i = 1; i <= M; ++i)
{
sz[i] = prime[i] * sz[i - 1];
for(int j = 1; j <= PM; ++j) phi[j][i] = phi[j][i - 1] - phi[j / prime[i]][i - 1];
}
}
int sqrt2(LL x)
{
LL r = (LL)sqrt(x - 0.1);
while(r * r <= x) ++r;
return int(r - 1);
}
int sqrt3(LL x)
{
LL r = (LL)cbrt(x - 0.1);
while(r * r * r <= x) ++r;
return int(r - 1);
}
LL getphi(LL x, int s)
{
if(s == 0) return x;
if(s <= M) return phi[x % sz[s]][s] + (x / sz[s]) * phi[sz[s]][s];
if(x <= prime[s]*prime[s]) return pi[x] - s + 1;
if(x <= prime[s]*prime[s]*prime[s] && x < N)
{
int s2x = pi[sqrt2(x)];
LL ans = pi[x] - (s2x + s - 2) * (s2x - s + 1) / 2;
for(int i = s + 1; i <= s2x; ++i) ans += pi[x / prime[i]];
return ans;
}
return getphi(x, s - 1) - getphi(x / prime[s], s - 1);
}
LL getpi(LL x)
{
if(x < N) return pi[x];
LL ans = getphi(x, pi[sqrt3(x)]) + pi[sqrt3(x)] - 1;
for(int i = pi[sqrt3(x)] + 1, ed = pi[sqrt2(x)]; i <= ed; ++i) ans -= getpi(x / prime[i]) - i + 1;
return ans;
}
LL lehmer_pi(LL x)
{
if(x < N) return pi[x];
int a = (int)lehmer_pi(sqrt2(sqrt2(x)));
int b = (int)lehmer_pi(sqrt2(x));
int c = (int)lehmer_pi(sqrt3(x));
LL sum = getphi(x, a) +(LL)(b + a - 2) * (b - a + 1) / 2;
for (int i = a + 1; i <= b; i++)
{
LL w = x / prime[i];
sum -= lehmer_pi(w);
if (i > c) continue;
LL lim = lehmer_pi(sqrt2(w));
for (int j = i; j <= lim; j++) sum -= lehmer_pi(w / prime[j]) - (j - 1);
}
return sum;
}
int main()//因为统计了质数个数可以用在线判断用二分
{
LL n,l,r,mid;
int sum=1;
init();
while(scanf("%lld",&n)!=EOF)
{
if(n==0)
break;
l=1,r=50000000;
while(l<r) {
mid=(l+r)/2;
LL t=lehmer_pi(mid);
if(t>=n)
r=mid;
else
l=mid+1;
}
printf("Case %d: %lld\n",sum++,l);
}
return 0;
}