Graph Theory Class(min25筛求1e10素数前缀和)

Problem Description

This class is on graph theory. Mr. Kruskal teaches babies the concept of minimal spanning tree, and how to calculate the minimal spanning tree of a given graph.

Now, it's time for an in-class quizz. Mr. Kruskal shows a special graph G: G is a complete undirected graph with n vertices, and vertices in G are indexed from 1 to n. The weight of the edge between the ith vertex and the jth vertex is equal to lcm(i+1,j+1). Babies are asked to find the minimal spanning tree of G.

As a super baby, Baby Volcano quickly finds an answer, but he is not sure on the correctness of his answer. Your task is to tell Baby Volcano the weight sum of all edges on the minimal spanning tree, so that he could verify his answer.

Given two positive integers, lcm(i,j) is defined as the minimal positive integer k satisfying both i and j are factors of k.

Input

The first line contains a single integer t(1≤t≤50), the number of testcases.

For each testcase, the first line contains two integers n,K(1≤n≤1010,108≤K≤109).

The input guarantees that K is a prime number.

The input guarantees that there are no more than 5 testcases with n>109.

Output

For each testcase, output a single line with a single integer, the answer module K.

Sample Input

3 3 998244353 100 998244353 1000000000 998244353

Sample Output

10 6307 192026508

Source

2020中国大学生程序设计竞赛(CCPC) - 网络选拔赛

调了3个半小时 还是凉了。。。不能说是板子问题,主要是我套前缀和公式前没对 n 取模,改了几次心态就炸了。

都是我的锅qaq(过了这题好像也莫得名额 博弈也没想出来

下面用了两个板子。

首先是来自知乎的:https://www.zhihu.com/question/29580448/answer/882461056

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N = 1000010;

typedef long long ll;

ll mod;
ll qpow(ll a, ll b)
{
    ll ans = 1;
    while(b)
    {
        if(b & 1)
            ans = ans * a % mod;
        a = a * a % mod;
        b /= 2;
    }
    return ans % mod;
}

ll prime[N], id1[N], id2[N], flag[N], ncnt, m;

ll g[N], sum[N], a[N], T, n;

inline ll ID(ll x)
{
    return x <= T ? id1[x] : id2[n / x];
}

inline ll calc(ll x)
{
    return x * (x + 1) / 2 - 1;
}

inline ll f(ll x)
{
    return x;
}

inline void init()
{
    ncnt = m = 0;
    T = sqrt(n + 0.5);
    for (ll i = 2; i <= T; i++)
    {
        if (!flag[i])
            prime[++ncnt] = i, sum[ncnt] = sum[ncnt - 1] + i;
        for (ll j = 1; j <= ncnt && i * prime[j] <= T; j++)
        {
            flag[i * prime[j]] = 1;
            if (i % prime[j] == 0)
                break;
        }
    }
    for (ll l = 1; l <= n; l = n / (n / l) + 1)
    {
        a[++m] = n / l;
        if (a[m] <= T)
            id1[a[m]] = m;
        else
            id2[n / a[m]] = m;
        g[m] = calc(a[m]);
    }
    for (ll i = 1; i <= ncnt; i++)
        for (ll j = 1; j <= m && (ll)prime[i] * prime[i] <= a[j]; j++)
            g[j] = g[j] - (ll)prime[i] * (g[ID(a[j] / prime[i])] - sum[i - 1]);
}

inline ll solve(ll x)
{
    if (x <= 1)
        return x;
    return n = x, init(), g[ID(n)];
}

int main()
{
    ll n, t;
    scanf("%lld", &t);
    while(t--) {
        scanf("%lld%lld", &n, &mod);
        ll ans = (solve(n + 1) - 2 + mod) % mod;
        ll inv2 = qpow(2, mod - 2) % mod;
        ll tmp = ((n + 4) % mod * (n - 1) % mod) % mod * inv2 % mod;
        printf("%lld\n", (ans + tmp) % mod);
    }
}

 下面来自https://www.cnblogs.com/purinliang/p/13703156.html

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

ll mod;

inline ll add_mod(ll x, ll y) {
    return (x + y >= mod) ? (x + y - mod) : (x + y);
}

inline ll sub_mod(ll x, ll y) {
    return (x < y) ? (x - y + mod) : (x - y);
}

inline ll mul_mod(ll x, ll y) { ///
    return x * y % mod;
}

inline ll sum(ll n) {
    n %= mod;
    return (n * (n + 1)) / 2 % mod; ///
}

const int MAXN = 1e6 + 5;

ll ssum[MAXN];
ll lsum[MAXN];
bool mark[MAXN];

ll prime_cnt(ll n) {
    const ll v = sqrt(n);
    ssum[0] = 0;
    lsum[0] = 0;
    memset(mark, 0, sizeof(mark[0]) * (v + 1));
    for(ll i = 1; i <= v; ++i) {
        ssum[i] = sum(i) - 1;
        lsum[i] = sum(n / i) - 1;
    }
    for(ll p = 2; p <= v; ++p) {
        if(ssum[p] == ssum[p - 1])
            continue;
        ll psum = ssum[p - 1];
        ll q = p * p;
        ll ed = min((ll)v, n / q);
        ll delta1 = (p & 1) + 1;
        for(ll i = 1; i <= ed; i += delta1) {
            if(!mark[i]) {
                ll d = i * p;
                ll tmp = (d <= v) ? lsum[d] : ssum[n / d];
                tmp = sub_mod(tmp, psum);
                tmp = mul_mod(tmp, p);  ///
                lsum[i] = sub_mod(lsum[i], tmp);
            }
        }
        ll delta2 = p * delta1;
        for(ll i = q; i <= ed; i += delta2)
            mark[i] = 1;
        for(ll i = v; i >= q; --i) {
            ll tmp = ssum[i / p];
            tmp = sub_mod(tmp, psum);
            tmp = mul_mod(tmp, p);  ///
            ssum[i] = sub_mod(ssum[i], tmp);
        }
    }
    return lsum[1];
}

ll qpow(ll a, ll b) {
    ll ans = 1;
    while(b) {
        if(b & 1)
            ans = ans * a % mod;
        a = a * a % mod;
        b /= 2;
    }
    return ans % mod;
}

int main() {
    ll n, t;
    scanf("%lld", &t);
    while(t--) {
        scanf("%lld%lld", &n, &mod);
        ll ans = prime_cnt(n + 1) - 2;
        ll inv = qpow(2, mod - 2) % mod;
        ll tmp = ((n + 4) % mod * (n - 1) % mod) * inv % mod;
        printf("%lld\n", (ans + tmp) % mod);
    }
    return 0;
}

 

全部评论

相关推荐

07-09 18:33
门头沟学院 Java
这么逆天每年都有人去???&nbsp;填多益网申就是大型的服从性测试
鲁大牛:辅导员在群里发了这个公司我就申了一下。网申居然要写当场开摄像头写两篇不少于三百字的作文。太逆天了
点赞 评论 收藏
分享
07-07 12:25
门头沟学院 Java
程序员牛肉:你这个智邮公司做的就是那个乐山市税务系统的服务吗?
点赞 评论 收藏
分享
不愿透露姓名的神秘牛友
07-10 14:00
林子大了什么鸟都有啊,我觉得我说的已经很客气了,阴阳谁呢
牛客62656195...:应该不是阴阳吧?你第一次注册的时候boss就说你是牛人
点赞 评论 收藏
分享
评论
1
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务