<span>省选模拟4 题解</span>

A. 点点的圈圈

因为题中保证的特殊性质,容易发现圆之间的关系形成树形结构。

对于每棵子树,选择树的根或者累计所有子树的答案。

问题在于建图,容易发现这个可以用KDTree优化。

考虑将所有的点建在KDTree上。

用每个点的圆覆盖KDTree,当完全覆盖时直接塞入对应点的vector中。

之后DFS一遍KDTree,同时用一个set维护祖先链上所有的vector的集合。

set所表示的集合即能覆盖该点的所有的圆。

对于KDTree中每一个点,直接在set中查后继就可以找到他的父亲。

 

B. 点点的计算

根据大神的一番推导证明,可得原式$=lcm_{i=n-k+1}^n i$

考虑求出一个数组$b_{i,j}$,使得$\prod_{i=n-k+1}^{n} b_{n,i}=lcm_{i=n-k+1}^n i$,即每向左一步的增量。

问题在于如何通过$b_{n-1}$推出$b_n$。

直接令$b_{n}=b_{n-1}$,$b_{n,n}=n$,然后发现前面一些贡献出错了。

对于前面的$b_{n,i}$中含有$n$的一些质因子,统计重复了,所以不断乘逆元消掉。

这个玩意可以直接用一些栈来维护。

为了在线的回答询问,将这个数组通过可持久化线段树实现就好了。

容易发现取$lcm$对应着指数取$max$。

所以这个做法实际上是对这个指数最值的差分,实际上与$zkw$线段树维护区间最值的方法有异曲同工之妙。

 

C. 点点的最大流

最大流=最小割。

对于树上的情况,直接树剖维护最小值。

对于每个点只在一个简单环上,直接缩边双。

还是通过树剖的思想,只要维护出重链上经过这个简单环的答案放在树剖结构中。

对于其它答案,暴力通过线段树查询就好了。

然而这个做法特判太多了,有点恶心。

所以偷了大神$G$_$keng$的做法。

考虑环上的最小边一定被割,所以只要把最小边累加到其他边上。

直接在原树上割掉最短边,仍然维护树的结构。

因为要修改,所以用$lct$维护一下就好了。

数据确实有锅,哭了。

全部评论

相关推荐

10-15 16:27
门头沟学院 C++
LeoMoon:建议问一下是不是你给他付钱😅😅
点赞 评论 收藏
分享
10-09 22:05
666 C++
找到工作就狠狠玩CSGO:报联合国演讲,报电子烟设计与制造
点赞 评论 收藏
分享
11-28 17:48
中山大学 C++
点赞 评论 收藏
分享
评论
点赞
收藏
分享
牛客网
牛客企业服务