Python 操作CSV格式文件

(一)CSV格式文件

1.说明

CSV是一种以逗号分隔数值的文件类型,在数据库或电子表格中,常见的导入导出文件格式就是CSV格式,CSV格式存储数据通常以纯文本的方式存数数据表。

(二)CSV库操作csv格式文本

操作一下表格数据:

1.读取表头的2中方式

#方式一
import csv
with open("D:\\test.csv") as f:
    reader = csv.reader(f)
    rows=[row for row in  reader]
    print(rows[0])


----------
#方式二
import csv
with open("D:\\test.csv") as f:
    #1.创建阅读器对象
    reader = csv.reader(f)
    #2.读取文件第一行数据
    head_row=next(reader)
    print(head_row)
结果演示:['姓名', '年龄', '职业', '家庭地址', '工资']
 

2.读取文件某一列数据

#1.获取文件某一列数据
import csv
with open("D:\\test.csv") as f:
    reader = csv.reader(f)
    column=[row[0] for row in  reader]
    print(column)

 
结果演示:['姓名', '张三', '李四', '王五', 'Kaina']
 

3.向csv文件中写入数据

#1.向csv文件中写入数据
import csv
with open("D:\\test.csv",'a') as f:
     row=['曹操','23','学生','黑龙江','5000']
     write=csv.writer(f)
     write.writerow(row)
     print("写入完毕!")
 

结果演示:


4.获取文件头及其索引

import csv
with open("D:\\test.csv") as f:
    #1.创建阅读器对象
    reader = csv.reader(f)
    #2.读取文件第一行数据
    head_row=next(reader)
    print(head_row)
    #4.获取文件头及其索引
    for index,column_header in enumerate(head_row):
        print(index,column_header)
 
结果演示:
['姓名', '年龄', '职业', '家庭地址', '工资']
0 姓名
1 年龄
2 职业
3 家庭地址
4 工资

 

5.获取某列的最大值

# ['姓名', '年龄', '职业', '家庭地址', '工资']
import csv
with open("D:\\test.csv") as f:
    reader = csv.reader(f)
    header_row=next(reader)
    # print(header_row)
    salary=[]
    for row in reader:
        #把第五列数据保存到列表salary中
         salary.append(int(row[4]))
    print(salary)
    print("员工最高工资为:"+str(max(salary)))

 
结果演示:员工最高工资为:10000
 

6.复制CSV格式文件

原文件test.csv


import csv
f=open('test.csv')
#1.newline=''消除空格行
aim_file=open('Aim.csv','w',newline='')
write=csv.writer(aim_file)
reader=csv.reader(f)
rows=[row for row in reader]
#2.遍历rows列表
for row in rows:
    #3.把每一行写到Aim.csv中
    write.writerow(row)
 

01.未添加关键字参数newline=’ ‘的结果:


02添加关键字参数newline=’ ‘的Aim.csv文件的内容:


(三)pandas库操作CSV文件

csv文件内容:

1.安装pandas库:pip install pandas

2.读取csv文件所有数据

 import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    print(data)

 
结果演示:
      姓名  年龄   职业  家庭地址     工资
0     张三  22   厨师   北京市   6000
1     李四  26  摄影师  湖南长沙   8000
2     王五  28  程序员    深圳  10000
3  Kaina  22   学生   黑龙江   2000
4     曹操  28   销售    上海   6000
 

3.describe()方法数据统计

import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    #了解更多describe()知识,ctr+鼠标左键
    print(data.describe())

 
结果演示:
             年龄            工资
count   5.00000      5.000000
mean   25.20000   6400.000000
std     3.03315   2966.479395
min    22.00000   2000.000000
25% 22.00000 6000.000000
50% 26.00000 6000.000000
75% 28.00000 8000.000000
max    28.00000  10000.000000

 

4.读取文件前几行数据

import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    #读取前2行数据
    # head_datas = data.head(0)
    head_datas=data.head(2)
    print(head_datas)


 
结果演示:
   姓名  年龄   职业  家庭地址    工资
0  张三  22   厨师   北京市  6000
1  李四  26  摄影师  湖南长沙  8000
 

5.读取某一行所有数据

import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    #读取第一行所有数据
    print(data.ix[0,])


 
结果演示:
姓名        张三
年龄        22
职业        厨师
家庭地址     北京市
工资      6000
 

6.读取某几行的数据

import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    #读取第一行、第二行、第四行的所有数据
    print(data.ix[[0,1,3],:])


 
结果演示:
      姓名  年龄   职业  家庭地址    工资
0     张三  22   厨师   北京市  6000
1     李四  26  摄影师  湖南长沙  8000
3  Kaina  22   学生   黑龙江  2000
 

7.读取所有行和列数据

import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    #读取所有行和列数据
    print(data.ix[:,:])

 
结果演示:
      姓名  年龄   职业  家庭地址     工资
0     张三  22   厨师   北京市   6000
1     李四  26  摄影师  湖南长沙   8000
2     王五  28  程序员    深圳  10000
3  Kaina  22   学生   黑龙江   2000
4     曹操  28   销售    上海   6000
 

8.读取某一列的所有行数据

import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    # print(data.ix[:, 4])
    print(data.ix[:,'工资'])
 
结果演示:
0     6000
1     8000
2    10000
3     2000
4     6000
Name: 工资, dtype: int64
 

9.读取某几列的某几行

import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    print(data.ix[[0,1,3],['姓名','职业','工资']])
 
结果演示:
      姓名   职业    工资
0     张三   厨师  6000
1     李四  摄影师  8000
3  Kaina   学生  2000
 

10.读取某一行和某一列对应的数据

import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    #读取第三行的第三列
    print("职业---"+data.ix[2,2])

 
结果演示:职业---程序员
 
  • 1

11.CSV数据的导入导出(复制CSV文件)

读方式01:

import pandas as pd
#1.读入数据
data=pd.read_csv(file)
 

写出数据02:

import pandas as pd
#1.写出数据,目标文件是Aim.csv
data.to_csv('Aim.csv')
 

其他:

01.读取网络数据:
import pandas as pd 
data_url = "https://raw.githubusercontent.com/mwaskom/seaborn-data/master/tips.csv"
#填写url读取
df = pd.read_csv(data_url)


----------
02.读取excel文件数据
import pandas as pd 
data = pd.read_excel(filepath)

 

实例演示:

1.test.csv原文件内容


2.现在把test.csv中的内容复制到Aim.csv中

import pandas as pd
file=open('test.csv')
#1.读取file中的数据
data=pd.read_csv(file)
#2.把data写到目标文件Aim.csv中
data.to_csv('Aim.csv')
print(data)

 

结果演示:


注:pandas模块处理Excel文件和处理CSV文件差不多!

参考文档:https://docs.python.org/3.6/library/csv.html

学习视频:https://www.365yg.com/a6449129169518330382

转自原文

全部评论

相关推荐

双非坐过牢:非佬,可以啊10.28笔试,11.06评估11.11,11.12两面,11.19oc➕offer
点赞 评论 收藏
分享
评论
点赞
收藏
分享
牛客网
牛客企业服务