【每日一题】剑指 Offer 14- II. 剪绳子 II

给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m - 1] 。请问 k[0]k[1]…*k[m - 1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。

<mark>答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。</mark>

示例 1:
输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1

示例 2:
输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36

<mark>提示:2 <= n <= 1000</mark>

昨天刚做的剪绳子一,用的贪心算法,今天这个题和昨天的那差不多,不过为一不一样的地方是<mark>答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。</mark>
难点就再这里,因为需要对三的a次方取余,这就涉及到一个知识点<mark>快速幂算法</mark>
力扣的题解贪心看懂了,快速幂没看懂

去bilibili 找的视频讲解再结合题解看明白了
视频连接
这个算法我编辑不出来,有兴趣的可以看看视频,打的算草纸。

下面写一下我的题解

class Solution {
    public int cuttingRope(int n) {
        if(n <= 3) return n - 1;
        int b = n % 3, p = 1000000007;
        long rem = 1, x = 3;
        for(int a = n / 3 - 1; a > 0; a >>= 1) {
            if(a % 2 == 1) rem = (rem * x) % p;
            x = (x * x) % p;
        }
        if(b == 0) return (int)(rem * 3 % p);
        if(b == 1) return (int)(rem * 4 % p);
        return (int)(rem * 6 % p);
    }
}

全部评论

相关推荐

Yushuu:你的确很厉害,但是有一个小问题:谁问你了?我的意思是,谁在意?我告诉你,根本没人问你,在我们之中0人问了你,我把所有问你的人都请来 party 了,到场人数是0个人,誰问你了?WHO ASKED?谁问汝矣?誰があなたに聞きましたか?누가 물어봤어?我爬上了珠穆朗玛峰也没找到谁问你了,我刚刚潜入了世界上最大的射电望远镜也没开到那个问你的人的盒,在找到谁问你之前我连癌症的解药都发明了出来,我开了最大距离渲染也没找到谁问你了我活在这个被辐射蹂躏了多年的破碎世界的坟墓里目睹全球核战争把人类文明毁灭也没见到谁问你了😆
点赞 评论 收藏
分享
评论
点赞
收藏
分享
牛客网
牛客企业服务