python 线性代数
matlab 能做的,python 都能做
向量
python中的vector一般由numpy的array结构表示。
自然,向量的运算与array的运算是一样的,但是要区分向量的内积和array间的乘法。
In [1]: import numpy as np In [2]: x = np.ones(3) # Vector of three ones In [3]: y = np.array((2, 4, 6)) # Converts tuple (2, 4, 6) into array In [4]: x + y Out[4]: array([ 3., 5., 7.]) In [5]: 4 * x Out[5]: array([ 4., 4., 4.])
In [6]: np.sum(x * y) # 向量内积 Inner product of x and y Out[6]: 12.0 In [7]: np.sqrt(np.sum(x**2)) # Norm of x, take one Out[7]: 1.7320508075688772 In [8]: np.linalg.norm(x) # Norm of x, take two Out[8]: 1.7320508075688772
矩阵
矩阵就是多维向量组。
In [1]: import numpy as np In [2]: A = ((1, 2), ...: (3, 4)) In [3]: type(A) Out[3]: tuple In [4]: A = np.array(A) In [5]: type(A) Out[5]: numpy.ndarray In [6]: A.shape Out[6]: (2, 2)
In [8]: A = np.identity(3) In [9]: B = np.ones((3, 3)) In [10]: 2 * A Out[10]: array([[ 2., 0., 0.], [ 0., 2., 0.], [ 0., 0., 2.]]) In [11]: A + B Out[11]: array([[ 2., 1., 1.], [ 1., 2., 1.], [ 1., 1., 2.]])<tt class="docutils literal" style="border:1px dotted rgb(204,204,204);color:rgb(51,51,51);">矩阵乘法由np.dot(A, B)</tt> 计算,要区别它与A*B的不同。
解线性方程:
在scipy.linalg 中提供的函数的底层代码都是由优化后的Fortran代码组成。
In [9]: import numpy as np In [10]: from scipy.linalg import inv, solve, det In [11]: A = ((1, 2), (3, 4)) In [12]: A = np.array(A) In [13]: y = np.ones((2, 1)) # Column vector In [14]: det(A) # 求行列式 Check that A is nonsingular, and hence invertible Out[14]: -2.0 In [15]: A_inv = inv(A) # 求逆矩阵 Compute the inverse In [16]: A_inv Out[16]: array([[-2. , 1. ], [ 1.5, -0.5]]) In [17]: x = np.dot(A_inv, y) # 解方程 Solution In [18]: np.dot(A, x) # Should equal y Out[18]: array([[ 1.], [ 1.]]) In [19]: solve(A, y) # Produces same solution 解方程 Out[19]: array([[-1.], [ 1.]])在scipy中解方程Ax = y 的方法可以是x=np.dot(A_inv,y)也可以是solve(A,y)。
常用的最小二乘解法,数学上为x = (A'*A)_inv*A'*y,scipy中提供了函数scipy.linalg.lstsq(A,y)直接求解。
特征值与特征向量:
In [1]: import numpy as np In [2]: from scipy.linalg import eig In [3]: A = ((1, 2), ...: (2, 1)) In [4]: A = np.array(A) In [5]: evals, evecs = eig(A) In [6]: evals Out[6]: array([ 3.+0.j, -1.+0.j]) In [7]: evecs Out[7]: array([[ 0.70710678, -0.70710678], [ 0.70710678, 0.70710678]])注意evecs是两个特征向量组成的特征向量组。