Tensorflow 实现--卷积神经网络(两层)去识别mnist数据集
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 定义一个初始化权重的函数
def weight_variables(shape):
w = tf.Variable(tf.random_normal(shape=shape, mean=0.0, stddev=1.0))
return w
def bias_variables(shape):
b = tf.Variable(tf.constant(0.0, shape=shape))
return b
# 定义一个初始化偏置的函数
def model():
"""
自定义的卷积模型
:return:
"""
# 1.建立数据的占位符 x[None, 784] 表示样本数不确定 y_true[None,10] 相应的目标值也不确定
with tf.variable_scope("data"):
x = tf.placeholder(tf.float32, [None, 784])
y_true = tf.placeholder(tf.int32, [None, 10])
# 2.第一个卷积层 卷积:5*5*1, 32个,strips=[1,1,1,1] 激活:tf.nn.relu 池化
with tf.variable_scope("conv1"):
# 初始化权重
w_conv1 = weight_variables([5, 5, 1, 32])
b_conv1 = bias_variables([32])
# 对x进行形状的改变[None, 784] [None, 28, 28, 1]
x_reshape = tf.reshape(x, [-1, 28, 28, 1])
# [None, 28, 28, 1] --> [None, 28, 28, 32]
x_relu1 = tf.nn.relu(tf.nn.conv2d(x_reshape, w_conv1, strides=[1, 1, 1, 1], padding='SAME')+b_conv1)
# 池化 2*2 , stripes2 [None, 28, 28, 32]->[None, 14, 14, 32]
x_pool1 = tf.nn.max_pool(x_relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # padding即是往外填充
# 3.第二个卷积层 卷积:5*5*32, 64个filter,strips=[1,1,1,1] 激活:tf.nn.relu 池化
with tf.variable_scope("conv2"):
w_conv2 = weight_variables([5, 5, 32, 64])
b_conv2 = bias_variables([64]) # 生成64个偏置
# 卷积,激活,池化计算
# [None, 14, 14, 32] -> [None, 14, 14, 64]
x_relu2 = tf.nn.relu(tf.nn.conv2d(x_pool1, w_conv2, strides=[1, 1, 1, 1], padding='SAME')+b_conv2)
# 池化 2*2 , stripes2 [None, 14, 14, 64]->[None, 7, 7, 64]
x_pool2 = tf.nn.max_pool(x_relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # padding即是往外填充
# 4.全连接层 [Non, 7, 7, 64] -> [None, 7*7*64]*[7*7*64,10] + [10] = [None, 10]
with tf.variable_scope('quanlianjie'):
# 随机初始化权重和偏置
w_fc = weight_variables([7*7*64, 10])
b_fc = bias_variables([10])
# 修改形状[None,7,7,64] -> [None, 7*7*64]
x_fc_reshape = tf.reshape(x_pool2, [-1, 7*7*64])
# 进行矩阵运算得出每个样本的10个结果
y_predict = tf.matmul(x_fc_reshape, w_fc) + b_fc
return x, y_true, y_predict
def conv_fc():
# 获取真实数据
mnist = input_data.read_data_sets("./data/mnist/input_data/", one_hot=True)
# 定义模型,得出输出
x, y_true, y_predict = model()
# 3.求出所有样本的损失,然后求平均值
with tf.variable_scope("soft_cross"):
# 求平均交叉熵损失
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_predict))
# 4.梯度下降求出损失
with tf.variable_scope("optimizer"):
train_op = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
# 5.计算准确率
with tf.variable_scope("acc"):
equal_list = tf.equal(tf.arg_max(y_true, 1), tf.arg_max(y_predict, 1))
# equal_list None个样本 [1, 0, 1, 0 ......]
accuracy = tf.reduce_mean(tf.cast(equal_list, tf.float32))
#定义一个初始化变量op
init_op = tf.global_variables_initializer()
# 开启一个会话
with tf.Session() as sess:
sess.run(init_op)
# 循环去训练
for i in range(1000):
mnist_x, mnist_y = mnist.train.next_batch(50)
# 运行train_op训练
sess.run(train_op, feed_dict={x: mnist_x, y_true: mnist_y})
print("训练第%d步,准确率为:%f" % (i, sess.run(accuracy, feed_dict={x: mnist_x, y_true: mnist_y})))
return None
if __name__ == '__main__':
conv_fc()