牛客算法周周练9(题解)
A:符合条件的整数
题意
给定两个整数N,M,表示区间 [2^N,2^M),请求出在这个区间里有多少个整数i满足i % 7=1
题解
也就是求2^N-1~2^M-2有多少数被7整除,答案就是
用一下__int128就好
代码
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define lowbit(x) x&(-x)
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll, ll> pll;
const int N = 1e5+5;
const ll mod = 1e9+7;
const int INF = 0x3f3f3f3f;
const double eps =1e-9;
const double PI=acos(-1.0);
const int dir[4][2]={-1,0,1,0,0,-1,0,1};
const int exdir[4][2]={1,1,1,-1,-1,1,-1,-1};
void solve(){
int n,m;cin>>n>>m;
__int128 a=1,b=1;
for(int i=0;i<n;i++)a*=2;
for(int i=0;i<m;i++)b*=2;
a-=2;b-=2;
__int128 ans=b/7-a/7;
ll now=ans;
cout<<now;
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
//int t;cin>>t;
//while(t--)solve(),cout<<'\n';
solve();
return 0;
}
B.Relic Discovery
题意
Recently, paleoanthropologists have found historical remains on an island in the Atlantic Ocean. The most inspiring thing is that they excavated in a magnificent cave and found that it was a huge tomb. Inside the construction, researchers identified a large number of skeletons, and funeral objects including stone axe, livestock bones and murals. Now, all items have been sorted, and they can be divided into N types. After they were checked attentively, you are told that there are Ai items of the i-th type. Further more, each item of the i-th type requires Bi million dollars for transportation, analysis, and preservation averagely. As your job, you need to calculate the total expenditure.
题解
直接计算
代码
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define lowbit(x) x&(-x)
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll, ll> pll;
const int N = 1e5+5;
const ll mod = 1e9+7;
const int INF = 0x3f3f3f3f;
const double eps =1e-9;
const double PI=acos(-1.0);
const int dir[4][2]={-1,0,1,0,0,-1,0,1};
const int exdir[4][2]={1,1,1,-1,-1,1,-1,-1};
void solve(){
int n;cin>>n;
ll ans=0;
for(int i=0;i<n;i++){
ll x,y;cin>>x>>y;
ans+=x*y;
}
cout<<ans;
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
int t;cin>>t;
while(t--)solve(),cout<<'\n';
//solve();
return 0;
}
D.石子游戏
Alice和Bob在玩游戏,他们面前有n堆石子,对于这些石子他们可以轮流进行一些操作,不能进行下去的人则输掉这局游戏。
可以进行两种操作:
- 把石子数为奇数的一堆石子分为两堆正整数个石子
- 把两堆石子数为偶数的石子合并为一堆
两人都足够聪明,会按照最优策略操作。现在Alice想知道自己先手,谁能最后赢得比赛。
题解
奇数个数石头对答案其实没有影响,因为你操作后产生偶数个石头和奇数个石头,偶数石头会被对手合并掉,此时又轮到你了,所以答案只取决与偶数个数石头。注意对于0,和1个数石头可以忽略不计
代码
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define lowbit(x) x&(-x)
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll, ll> pll;
const int N = 1e5+5;
const ll mod = 1e9+7;
const int INF = 0x3f3f3f3f;
const double eps =1e-9;
const double PI=acos(-1.0);
const int dir[4][2]={-1,0,1,0,0,-1,0,1};
const int exdir[4][2]={1,1,1,-1,-1,1,-1,-1};
ll qpow(ll x,ll y){
ll ans=1,t=x;
while(y>0){
if(y&1)ans*=t,ans%=mod;
t*=t,t%=mod;
y>>=1;
}
return ans%mod;
}
void solve(){
int n,k=0,kk=0;cin>>n;
for(int i=0;i<n;i++){
int x;cin>>x;
if(x&1&&x!=1)k++;
else if(x&&x%2==0)kk++;
}
if(kk%2==0&&(kk||k))cout<<"Alice";
else cout<<"Bob";
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
//int t;cin>>t;
//while(t--)solve(),cout<<'\n';
solve();
return 0;
}
E.凸多边形的划分
给定一个具有N个顶点的凸多边形,将顶点从1至N标号,每个顶点的权值都是一个正整数。将这个凸多边形划分成N-2个互不相交的三角形,试求这些三角形顶点的权值乘积和至少为多少。
题解
凸边形,取两个点,形成的一条边,我们把那条边形成的多边形中按顺序取点,区间DP。状态方程
dp[i][r]=min(dp[i][r],dp[i][j]+dp[j][r]+a[i]*a[j]*a[r]);
用一下__int128
代码
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define lowbit(x) x&(-x)
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll, ll> pll;
const int N = 1e5+5;
const ll mod = 1e9+7;
const int INF = 0x3f3f3f3f;
const double eps =1e-9;
const double PI=acos(-1.0);
const int dir[4][2]={-1,0,1,0,0,-1,0,1};
const int exdir[4][2]={1,1,1,-1,-1,1,-1,-1};
__int128 dp[60][60],a[60];
void solve(){
int n,x;cin>>n;
for(int i=1;i<=n;i++)cin>>x,a[i]=x;
__int128 inf=1e9;
for(int l=2;l<=n;l++){
for(int i=1;i+l-1<=n;i++){
int r=i+l-1;
dp[i][r]=inf*inf*inf;
if(l==2)dp[i][r]=0;
for(int j=i+1;j<r;j++){
dp[i][r]=min(dp[i][r],dp[i][j]+dp[j][r]+a[i]*a[j]*a[r]);
}
}
}
__int128 ans=dp[1][n];
string s;
while(ans>0){
s=(char)((ans%10)+'0')+s;
ans/=10;
}
cout<<s;
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
//int t;cin>>t;
//while(t--)solve(),cout<<'\n';
solve();
return 0;
}