平衡二叉树

平衡二叉树

http://www.nowcoder.com/questionTerminal/8b3b95850edb4115918ecebdf1b4d222

题解

这是一篇针对初学者的题解,用两种方法解决。
知识点:树,递归
难度:一星


题解

方法一:自顶向下

判断一个数是否为平衡二叉树。平衡二叉树是左子树的高度与右子树的高度差的绝对值小于等于1,同样左子树是平衡二叉树,右子树为平衡二叉树。

根据定义,如果我们能够求出以每个结点为根的树的高度,然后再根据左右子树高度差绝对值小于等于1,,就可以判断以每个结点为根的树是否满足定义。
我们可以用hash<TreeNode*, int>来存以每个结点的树的高度。
代码如下:

map<TreeNode*, int> hs;
int depth(TreeNode *root) {
    if (!root) return 0;
    if (hs.find(root) != hs.end()) return hs[root];
    int ldep = depth(root->left);
    int rdep = depth(root->right);
    return hs[root] = max(ldep, rdep) + 1;
}

然后再用先序遍历:根节点、左子树、右子树来判断以每个结点为根的树是否满足条件。
代码如下:

bool judge(TreeNode *root) {
    if (!root) return true;
    return abs(hs[root->left] - hs[root->right]) <= 1 && 
    judge(root->left) && judge(root->right);
}

最后的代码为:

class Solution {
public:
    map<TreeNode*, int> hs;
    int depth(TreeNode *root) {
        if (!root) return 0;
        if (hs.find(root) != hs.end()) return hs[root];
        int ldep = depth(root->left);
        int rdep = depth(root->right);
        return hs[root] = max(ldep, rdep) + 1;
    }
    bool judge(TreeNode *root) {
        if (!root) return true;
        return abs(hs[root->left] - hs[root->right]) <= 1 && 
        judge(root->left) && judge(root->right);
    }
    bool IsBalanced_Solution(TreeNode* root) {
        depth(root);
        return judge(root);
    }
};

时间复杂度:O(N)
空间复杂度:O(N)

方法二:自底向上

方法一是先求出以每个结点为根的树的高度,然后再判断,其实可以直接再求高度的同时,直接判断即可。
利用后序遍历:左子树、右子树、根节点,可以先递归到叶子节点,然后在回溯的过程中来判断是否满足条件。
求树的高度的代码为:

int depth(TreeNode *root) {
    if (!root) return 0;
    int ldep = depth(root->left);
    int rdep = depth(root->right);
    return max(ldep, rdep) + 1;
}

然后对上述代码加以改造,如果不满足平衡二叉树的定义,则返回-1,并且如果左子树不满足条件了,直接返回-1,右子树也是如此,相当于剪枝,加速结束递归。
代码如下:

int depth(TreeNode *root) {
    if (!root) return 0;
    int ldep = depth(root->left);
    if (ldep == -1) return -1;
    int rdep = depth(root->right);
    if (rdep == -1) return -1;
    int sub = abs(ldep - rdep);
    if (sub > 1) return -1;
    return max(ldep, rdep) + 1;
}

最后只需要判断depth(root)返回的是否为-1,如果是-1,则不是,否则,则是。
代码如下:

class Solution {
public:
    int depth(TreeNode *root) {
        if (!root) return 0;
        int ldep = depth(root->left);
        if (ldep == -1) return -1;
        int rdep = depth(root->right);
        if (rdep == -1) return -1;
        int sub = abs(ldep - rdep);
        if (sub > 1) return -1;
        return max(ldep, rdep) + 1;
    }
    bool IsBalanced_Solution(TreeNode* root) {
        return depth(root) != -1;
    }
};

时间复杂度:O(N)
空间复杂度:O(N)

全部评论
为什么自顶向下的时间复杂度是O(N)而不是N的平方呢,在求深度的时候遍历一次,然后判断的时候还得遍历一次
2 回复 分享
发布于 2021-11-22 11:28
本道题if (hs.find(root) != hs.end()) return hs[root]是不是没必要?求解答,有点迷
1 回复 分享
发布于 2020-08-12 10:39
时间复杂度和空间复杂度对吗?
4 回复 分享
发布于 2021-01-26 20:48
第一种方法相当于前序遍历,不会重复遍历的啊,所以 if (hs.find(root) != hs.end()) return hs[root];可以不要的
2 回复 分享
发布于 2022-02-17 20:57
大佬们,if (hs.find(root) != hs.end()) return hs[root];什么意思啊?
点赞 回复 分享
发布于 2020-06-08 10:01
第二种方法怎么会有空间占用呢?应该是o(1)啊
点赞 回复 分享
发布于 2021-04-20 10:57
递归法求解树的深度为什么+1 depth+1呢?
点赞 回复 分享
发布于 2021-06-09 16:12
第二个解法的空间复杂度O(1)吧
点赞 回复 分享
发布于 2022-01-06 18:13

相关推荐

一个菜鸡罢了:哥们,感觉你的简历还是有点问题的,我提几点建议,看看能不能提供一点帮助 1. ”新余学院“别加粗,课程不清楚是否有必要写,感觉版面不如拿来写一下做过的事情,教育经历是你的弱势就尽量少写 2. “干部及社团经历”和“自我评价”删掉 3. 论文后面的“录用”和“小修”啥的都删掉,默认全录用,问了再说,反正小修毕业前肯定能发出来 4. 工作经验和研究成果没有体现你的个人贡献,着重包装一下个人贡献
点赞 评论 收藏
分享
重生2012之我是java程序员:换个稍微正式点的照片吧
点赞 评论 收藏
分享
75 9 评论
分享
牛客网
牛客企业服务