“科大讯飞杯”第十七届同济大学程序设计预选赛暨高校网络友谊赛
给出的仅为我的做题顺序,与题目难度不一定匹配
F、排列计算
前缀和
给定区间,可以控制区间元素加1,最后把区间元素的染色次数排序,从次数最大开始填最大的数。
具体区间元素+1,又不用模拟去实现,直接在左端点处加1,右端点后面一个点减1即可。最后求前缀和就行。
再把求好的前缀和数组排个序,大功告成
#include<bits/stdc++.h> using namespace std; #pragma GCC optimize(2) #pragma GCC optimize(3) typedef long long ll; #define INF 0x3f3f3f3f const int mod = 1e9+7; const int maxn = 8000*8000+5; #define iss ios::sync_with_stdio(false) inline ll read(){ ll s = 0, w = 1; char ch = getchar(); while (ch < 48 || ch > 57) { if (ch == '-') w = -1; ch = getchar(); } while (ch >= 48 && ch <= 57) s = (s << 1) + (s << 3) + (ch ^ 48), ch = getchar(); return s * w; } ll num[200005]; int main(){ int n = read(),m = read(); while(m--){ int l = read(),r = read(); num[l]++; num[r+1]--; } for(int i = 0 ; i <= n ; ++i ) num[i]+=num[i-1]; sort(num+1,num+1+n); ll ans = 0; for(int i = 1 ; i <= n ;++i){ ans += (i*num[i]); } cout<<ans<<endl; }
B、伤害计算
写法,用了个
和异常处理。对输入的字符串进行一个个数据处理即可,注意最后判断整数精度别开太小
)我竟然被1e-6坑了一发……
当然还有更好的写法,直接乘个2去算,最后判奇偶就行了。
import math a = list(input().split('+')) ans = 0.0 for i in a: try: tmp = int(i) ans += tmp except: cnt,tmp = map(int,i.split('d')) ans += cnt*(tmp+1)*0.5 if ans-int(ans)>0.1: print(ans) else : ans=int(ans) print(ans)
A、张老师和菜哭武的游戏
前导知识:拓展欧里几得
我们知道对于 存在整数解x与y,需要gcd(a,b)是c的因子。
对于用a和b求解出来的数随意组合也符合上面的
那么这题,给出了a,b,直接求解gcd即可,用n除掉gcd就是可以拿走的数。在对这个数判断奇偶即可
#include <bits/stdc++.h> #pragma GCC optimize(2) #pragma GCC optimize(3) using namespace std; #define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0) typedef long long ll; inline int read() { int s = 0, w = 1; char ch = getchar(); while (ch < 48 || ch > 57) { if (ch == '-') w = -1; ch = getchar(); } while (ch >= 48 && ch <= 57) s = (s << 1) + (s << 3) + (ch ^ 48), ch = getchar(); return s * w; } int main() { int T = read(); while (T--) { int n = read(), a = read(), b = read(); int tmp = __gcd(a, b); if (tmp != 1) n /= tmp; if (n & 1) puts("Yes"); else puts("No"); } return 0; }
D、车辆调度
地图很小,车辆很少,直接暴力破解即可。
直接跑地图即可,再把每个位置上下左右都走一遍
(钟涛大佬tql)
#include<bits/stdc++.h> using namespace std; #pragma GCC optimize(2) #pragma GCC optimize(3) typedef long long ll; #define INF 0x3f3f3f3f const int mod = 1e9 + 7; const int maxn = 8000 * 8000 + 5; #define iss ios::sync_with_stdio(false) inline ll read() { ll s = 0, w = 1; char ch = getchar(); while (ch < 48 || ch > 57) { if (ch == '-') w = -1; ch = getchar(); } while (ch >= 48 && ch <= 57) s = (s << 1) + (s << 3) + (ch ^ 48), ch = getchar(); return s * w; } int w, h, kk; char Map[15][15]; bool dfs(int x) { if (x > kk) return false; for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { if (Map[i][j] == 'R') { Map[i][j] = '.'; int k; if (i > 0 && Map[i - 1][j] == '.' || Map[i - 1][j] == 'D') { for (int k = i - 1; k >= 0; k--) if (k == 0 || Map[k - 1][j] == 'R' || Map[k - 1][j] == 'X') { if (Map[k][j] == 'D') return true; Map[k][j] = 'R'; if (dfs(x + 1)) return true; Map[k][j] = '.'; break; } } if (i + 1 < h && Map[i + 1][j] == '.' || Map[i + 1][j] == 'D') { for (int k = i + 1; k < h; ++k) { if (k == h - 1 || Map[k + 1][j] == 'R' || Map[k + 1][j] == 'X') { if (Map[k][j] == 'D') return true; Map[k][j] = 'R'; if (dfs(x + 1)) return true; Map[k][j] = '.'; break; } } } if (j + 1 < w && Map[i][j + 1] == '.' || Map[i][j + 1] == 'D') { for (int k = j + 1; k < w; ++k) { if (k == w - 1 || Map[i][k + 1] == 'R' || Map[i][k + 1] == 'X') { if (Map[i][k] == 'D') return true; Map[i][k] = 'R'; if (dfs(x + 1)) return true; Map[i][k] = '.'; break; } } } if (j > 0 && Map[i][j - 1] == '.' || Map[i][j - 1] == 'D') { for (int k = j - 1; k >= 0; k--) if (k == 0 || Map[i][k - 1] == 'R' || Map[i][k - 1] == 'X') { if (Map[i][k] == 'D') return true; Map[i][k] = 'R'; if (dfs(x + 1)) return true; Map[i][k] = '.'; break; } } Map[i][j] = 'R'; } } } return false; } int main() { w = read(), h = read(), kk = read(); for (int i = 0; i < h; ++i) scanf("%s", Map[i]); if (dfs(1)) puts("YES"); else puts("NO"); }
好了下面是比赛时间未写出来的了
E、弦
分子式卡特兰数我看出来了……居然死在了分母手上,我一直以为分母是个末项(n * 2 - 1)的等差数列……我一直只连接2条线。
现在发现是多蠢。分母应该是
再结合卡特兰数的通项公式
约分化简得到答案等于 在处理一下阶乘数组,利用费马小定理求解乘法逆元就是答案了。
#include <bits/stdc++.h> #pragma GCC optimize(2) #pragma GCC optimize(3) using namespace std; #define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0) typedef long long ll; inline int read() { int s = 0, w = 1; char ch = getchar(); while (ch < 48 || ch > 57) { if (ch == '-') w = -1; ch = getchar(); } while (ch >= 48 && ch <= 57) s = (s << 1) + (s << 3) + (ch ^ 48), ch = getchar(); return s * w; } const int MOD = 1e9 + 7; const int N = 1e7 + 7; ll jc[N]; ll qpow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) (ans *= a) %= MOD; b >>= 1; (a *= a) %= MOD; } return ans; } int main() { int n = read(); jc[0] = 1; for (int i = 1; i <= n + 1; ++i) jc[i] = jc[i - 1] * i % MOD; printf("%lld\n", qpow(2,n) * qpow(jc[n + 1], MOD - 2) % MOD); return 0; }
F、斐波那契和
我敢保证这题是最憋屈的,以为两天前的牛客练习赛63,斐波那契字符串刚刚好说了一句杜教BM,本菜鸡只百度了一下,知道是个帮你求递推式的没有去记,因为想着有OEIS,如果知道前几项直接求道通项公式就行了……然后结果就是这题没法做。。
具体实现……就是套板子,一般来说求解到前10项左右即可出答案,稳健一点,直接开了10000的数组,全部放进去。算到答案即可。
#include<bits/stdc++.h> using namespace std; #define rep(i,a,n) for (int i=a;i<n;i++) #define pb push_back typedef long long ll; #define SZ(x) ((ll)(x).size()) typedef vector<ll> VI; typedef pair<ll, ll> PII; const ll mod = 998244353; ll powmod(ll a, ll b) { ll res = 1; a %= mod; assert(b >= 0); for (; b; b >>= 1) { if (b & 1)res = res * a % mod; a = a * a % mod; }return res; } // head ll _, n; namespace linear_seq { const ll N = 10010; ll res[N], base[N], _c[N], _md[N]; vector<ll> Md; void mul(ll* a, ll* b, ll k) { rep(i, 0, k + k) _c[i] = 0; rep(i, 0, k) if (a[i]) rep(j, 0, k) _c[i + j] = (_c[i + j] + a[i] * b[j]) % mod; for (ll i = k + k - 1; i >= k; i--) if (_c[i]) rep(j, 0, SZ(Md)) _c[i - k + Md[j]] = (_c[i - k + Md[j]] - _c[i] * _md[Md[j]]) % mod; rep(i, 0, k) a[i] = _c[i]; } ll solve(ll n, VI a, VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+... // printf("%d\n",SZ(b)); ll ans = 0, pnt = 0; ll k = SZ(a); assert(SZ(a) == SZ(b)); rep(i, 0, k) _md[k - 1 - i] = -a[i]; _md[k] = 1; Md.clear(); rep(i, 0, k) if (_md[i] != 0) Md.push_back(i); rep(i, 0, k) res[i] = base[i] = 0; res[0] = 1; while ((1ll << pnt) <= n) pnt++; for (ll p = pnt; p >= 0; p--) { mul(res, res, k); if ((n >> p) & 1) { for (ll i = k - 1; i >= 0; i--) res[i + 1] = res[i]; res[0] = 0; rep(j, 0, SZ(Md)) res[Md[j]] = (res[Md[j]] - res[k] * _md[Md[j]]) % mod; } } rep(i, 0, k) ans = (ans + res[i] * b[i]) % mod; if (ans < 0) ans += mod; return ans; } VI BM(VI s) { VI C(1, 1), B(1, 1); ll L = 0, m = 1, b = 1; rep(n, 0, SZ(s)) { ll d = 0; rep(i, 0, L + 1) d = (d + (ll)C[i] * s[n - i]) % mod; if (d == 0) ++m; else if (2 * L <= n) { VI T = C; ll c = mod - d * powmod(b, mod - 2) % mod; while (SZ(C) < SZ(B) + m) C.pb(0); rep(i, 0, SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % mod; L = n + 1 - L; B = T; b = d; m = 1; } else { ll c = mod - d * powmod(b, mod - 2) % mod; while (SZ(C) < SZ(B) + m) C.pb(0); rep(i, 0, SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % mod; ++m; } } return C; } ll gao(VI a, ll n) { VI c = BM(a); c.erase(c.begin()); rep(i, 0, SZ(c)) c[i] = (mod - c[i]) % mod; return solve(n, c, VI(a.begin(), a.begin() + SZ(c))); } }; inline ll read() { ll s = 0, w = 1; char ch = getchar(); while (ch < 48 || ch > 57) { if (ch == '-') w = -1; ch = getchar(); } while (ch >= 48 && ch <= 57) s = (s << 1) + (s << 3) + (ch ^ 48), ch = getchar(); return s * w; } ll f[10005]; int main() { ll n = read(), k = read(); f[1] = 1, f[2] = 1; for (int i = 3; i <= 10000; ++i) f[i] = (f[i - 1] + f[i - 2]) % mod; VI a; ll x = 0; for (int i = 1; i <= 10000; ++i) { x = (x + powmod(i, k) * f[i] % mod) % mod; a.push_back(x); } printf("%lld\n", linear_seq::gao(a, n - 1)); }