多标签分类评估方式(Metrics for measuring the prediction quality of a multi-label system)

Metrics for measuring the prediction quality of a multi-label system

大多数情况下,机器学习,深度学习中我们经常面对的分类问题大多是二分类,多类问题,但是有时候我们也会有多标签分类问题的产生。

对于多标签分类问题,我们需要一个合理客观的评价这个分类器好坏的方式,在这里根据 Some remarks on predicting multi-label attributes in molecular biosystems Kuo-Chen Chou老师的论文复现了里面讲到的评估方式(Aiming,Coverage,Accuracy,AbsoluteTrue,AbsoluteFalse),能够较全面的对多标签分类问题进行评估,供大家参考。(这个评估标准基于生物医学的背景下,若有问题,大家一起交流学习)

def Aiming(y_hat, y):
    '''
    the “Aiming” rate (also called “Precision”) is to reflect the average ratio of the 
    correctly predicted labels over the predicted labels; to measure the percentage 
    of the predicted labels that hit the target of the real labels.
    '''
    
    import numpy as np
    n, m = y_hat.shape
    
    sorce_k = 0
    for v in range(n):
        union = 0
        intersection = 0
        for h in range(m):
            if y_hat[v,h] == 1 or y[v,h] == 1:
                union += 1
            if y_hat[v,h] == 1 and y[v,h] == 1:
                intersection += 1
        if intersection == 0:
            continue
        sorce_k += intersection/sum(y_hat[v])
    return sorce_k/n
def Coverage(y_hat, y):
    '''
    The “Coverage” rate (also called “Recall”) is to reflect the average ratio of the
    correctly predicted labels over the real labels; to measure the percentage of the 
    real labels that are covered by the hits of prediction.
    '''
    
    import numpy as np
    n, m = y_hat.shape
    
    sorce_k = 0
    for v in range(n):
        union = 0
        intersection = 0
        for h in range(m):
            if y_hat[v,h] == 1 or y[v,h] == 1:
                union += 1
            if y_hat[v,h] == 1 and y[v,h] == 1:
                intersection += 1
        if intersection == 0:
            continue
        sorce_k += intersection/sum(y[v])
        
    return sorce_k/n
    
def Accuracy(y_hat, y):
    '''
    The “Accuracy” rate is to reflect the average ratio of correctly predicted labels
    over the total labels including correctly and incorrectly predicted labels as well
    as those real labels but are missed in the prediction
    '''
    
    import numpy as np
    n, m = y_hat.shape

    sorce_k = 0
    for v in range(n):
        union = 0
        intersection = 0
        for h in range(m):
            if y_hat[v,h] == 1 or y[v,h] == 1:
                union += 1
            if y_hat[v,h] == 1 and y[v,h] == 1:
                intersection += 1
        if intersection == 0:
            continue
        sorce_k += intersection/union
    return sorce_k/n
def AbsoluteTrue(y_hat, y):
    '''
    错误一个即为零
    '''
    import numpy as np
    n, m = y_hat.shape
    sorce_k = 0
    for v in range(n):
        if list(y_hat[v]) == list(y[v]):            
            sorce_k += 1
    return sorce_k/n
def AbsoluteFalse(y_hat, y):
    '''
    hamming loss
    '''
    import numpy as np
    n, m = y_hat.shape

    sorce_k = 0
    for v in range(n):
        union = 0
        intersection = 0
        for h in range(m):
            if y_hat[v,h] == 1 or y[v,h] == 1:
                union += 1
            if y_hat[v,h] == 1 and y[v,h] == 1:
                intersection += 1
        sorce_k += (union-intersection)/m
    return sorce_k/n
全部评论

相关推荐

Gaynes:查看图片
点赞 评论 收藏
分享
06-27 12:54
已编辑
门头沟学院 Java
累了,讲讲我的大学经历吧,目前在家待业。我是一个二本院校软件工程专业。最开始选专业是觉得计算机感兴趣,所以选择了他。本人学习计算机是从大二暑假结束开始的,也就是大三开始。当时每天学习,我个人认为Java以及是我生活的一部分了,就这样持续学习了一年半,来到了大四上学期末,大概是在12月中旬,我终于找的到了一家上海中厂的实习,但我发现实习生的工作很枯燥,公司分配的活也不多,大多时间也是自己在自学。就这样我秋招末才找到实习。时间来到了3月中旬,公司说我可以转正,但是转正工资只有7000,不过很稳定,不加班,双休,因为要回学校参加答辩了,同时当时也是心高气傲,认为可以找到更好的,所以放弃了转正机会,回学校准备论文。准备论文期间就也没有投递简历。然后时间来到了5月中旬,这时春招基本也结束了,然后我开始投递简历,期间只是约到了几家下场面试。工资也只有6-7k,到现在我不知道该怎么办了。已经没有当初学习的心劲了,好累呀,但是又不知道该干什么去。在家就是打游戏,boss简历投一投。每天日重一次。26秋招都说是针对26届的人,25怎么办。我好绝望。要不要参加考公、考研、央国企这些的。有没有大佬可以帮帮我。为什么感觉别人找工作都是顺其自然的事情,我感觉自己每一步都在艰难追赶。八股文背了又忘背了又忘,我每次都花很长时间去理解他,可是现在感觉八股、项目都忘完了。真的已经没有力气再去学习了。图片是我的简历,有没有大哥可以指正一下,或者说我应该走哪条路,有点不想在找工作了。
码客明:太累了就休息一下兄弟,人生不会完蛋的
如果实习可以转正,你会不...
点赞 评论 收藏
分享
评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务