你已经长大了,需要学会线段树了
剩下的树
http://www.nowcoder.com/questionTerminal/f5787c69f5cf41499ba4706bc93700a2
https://blog.csdn.net/csyifanZhang/article/details/105632729
为了更好的阅读体验↑
线段树比暴力更加优美,这道题能用暴力完全是出题人给面子了。。。
看评论区大佬都水过了,我也先水一下,复杂度都可以过,可以见得数据之水当然这道题的数据量本身也是符合这个复杂度的,
暴力解法
ps:fill和memset别用得太多,有时候会被卡死
#include<iostream> #include<string> #include<string.h> #include<cstdio> #include<algorithm> #include<vector> #include<map> #include<queue> using namespace std; #define ll int #define MAX 10005 #define inf 0x3fffff ll arr[MAX]; int main() { ll L, M, a, b; while (cin >> L >> M) { fill(arr, arr + MAX, 1); for (int i = 0; i < M; i++) { cin >> a >> b; for (int i = a; i <= b; i++)arr[i] = 0; } ll res = 0; for (int i = 0; i <= L; i++)res += arr[i]; cout << res << endl; } }
线段树
但是如果,?还能水过嘛,显然不能,对于区间查询,区间修改,最好的方式即线段树。这道题的线段树更新也比较简单,具体还是看
#include<iostream> #include<string> #include<string.h> #include<cstdio> #include<algorithm> #include<vector> #include<map> #include<queue> using namespace std; #define ll int #define MAX 10005 #define inf 0x3fffff ll t[MAX * 4], tag[MAX * 4]; inline ll lc(ll k) { return k << 1; } inline ll rc(ll k) { return k << 1 | 1; } void pushUpSum(ll p) { t[p] = t[lc(p)] + t[rc(p)]; } void build(ll p, ll l, ll r){ if (l == r) { t[p] = 1; return; } ll mid = (l + r) >> 1; build(lc(p), l, mid); build(rc(p), mid + 1, r); pushUpSum(p); } inline void f(ll p, ll l, ll r, ll k) { tag[p] = k; t[p] = 0;//这里pushdown是清零操作 if (t[p] < 0)t[p] = 0; } inline void pushDown(ll p, ll l, ll r) { ll mid = (l + r) >> 1; f(lc(p), l, mid, tag[p]); f(rc(p), mid + 1, r, tag[p]); tag[p] = 0; } inline void update(ll nl, ll nr, ll l, ll r, ll p, ll k = -1) { //nl-nr:需要进行-1修改的区间 //l,r,p,k:当前节点所存储的区间以及节点的编号 if (nl <= l && r <= nr) {//需要修改区间包含了当前区间 t[p] = 0; tag[p] = -1; return;//当前区间清零 } if (tag[p] == -1)pushDown(p, l, r); ll mid = (l + r) >> 1; if (nl <= mid)update(nl, nr, l, mid, lc(p)); if (nr > mid)update(nl, nr, mid + 1, r, rc(p)); pushUpSum(p); } int main() { ll L, M, a, b; while (cin >> L >> M) { memset(t, 0, sizeof(t)); memset(tag, 0, sizeof(tag)); build(1, 0, L); for (int i = 0; i < M; i++) { cin >> a >> b; update(a, b, 0, L, 1); } cout << t[1] << endl; } }