矩阵快速幂/模拟
递推数列
http://www.nowcoder.com/questionTerminal/d0e751eac618463bb6ac447369e4aa25
https://blog.csdn.net/csyifanZhang/article/details/105625010
【为了良好的阅读体验,建议到上面】
乍一看直接模拟,暴力递推,索性NK的数据比较水,过起来很容易
#include<iostream> #include<string> #include<string.h> #include<cstdio> #include<algorithm> #include<vector> #include<map> #include<queue> using namespace std; #define ll int #define MAX 250 #define inf 10000000 #define mod 10000 int main() { ll a0, a1, p, q, k; while (cin >> a0 >> a1 >> p >> q >> k) { ll cnt = 2, res = 0; if (k == 0)cout << a0 << endl; else if (k == 1)cout << a1 << endl; else { while (cnt <= k) { res = (q * a0 % mod + p * a1 % mod) % mod; a0 = a1, a1 = res; cnt++; } } cout << res << endl; } }
但是这种题直接递推一般是过不了的出题人比较憨除外,这种类似于斐波那契数列的问题,一般都可以高效的转化为矩阵快速幂进行计算,一个详细教程
对公式
我们可以将他写作
这样的话我们进行和正常斐波那契数列一样的递推,就能得出(详细步骤见上面链接的教程)
#include<iostream> #include<string> #include<string.h> #include<cstdio> #include<algorithm> #include<vector> #include<map> #include<queue> using namespace std; #define ll int #define MAX 250 #define inf 10000000 #define mod 10000 struct mat { ll a[2][2]; mat operator * (mat m) { mat res; for (int i = 0; i < 2; i++)for (int j = 0; j < 2; j++)res.a[i][j] = 0; for (int i = 0; i < 2; i++) for (int j = 0; j < 2; j++) for (int k = 0; k < 2; k++) res.a[i][j] = (res.a[i][j] + a[i][k] * m.a[k][j]) % mod; return res; } }; mat quickPow(mat a, int k) { mat res;//对角矩阵 res.a[0][0] = res.a[1][1] = 1; res.a[0][1] = res.a[1][0] = 0; while (k > 0) { if (k & 1) res = res * a; a = a * a; k >>= 1; } return res; } int main() { ll a0, a1, p, q, k; while (cin >> a0 >> a1 >> p >> q >> k) { ll cnt = 2, ans = 0; if (k == 0)cout << a0 << endl; else if (k == 1)cout << a1 << endl; mat a; a.a[0][0] = p, a.a[0][1] = q, a.a[1][0] = 1, a.a[1][1] = 0; mat res = quickPow(a, k - 1); ans = ((res.a[0][0] * a1) % mod + (res.a[0][1] * a0) % mod) % mod; cout << ans << endl; } }