【每日算法Day 73】学妹大半夜私聊我有空吗,然后竟然做出这种事!

竟然甩给我一道算法题做,太可恶了嘤嘤嘤。

题目链接

LeetCode 99. 恢复二叉搜索树[1]

题目描述

二叉搜索树中的两个节点被错误地交换。

请在不改变其结构的情况下,恢复这棵树。

示例1

        输入:
[1,3,null,null,2]
   1
  /
 3
  \
   2
输出:
[3,1,null,null,2]
   3
  /
 1
  \
   2

      

示例2

        输入:
[3,1,4,null,null,2]
  3
 / \
1   4
   /
  2
输出:
[2,1,4,null,null,3]
  2
 / \
1   4
   /
  3

      

进阶:

  • 使用 O(n) 空间复杂度的解法很容易实现。
  • 你能想出一个只使用常数空间的解决方案吗?

题解

先不考虑空间复杂度,因为二叉搜索树的中序遍历是单调递增的,所以我们只需要求出它的中序遍历。然后两个结点被调换过位置,等价于递增序列中两个数调换了位置。那么我们只需要找出序列中第一个逆序对(前一个数)和最后一个逆序对(后一个数)就行了,然后换回它俩的位置。

但是中序遍历无论使用递归实现还是栈实现,空间复杂度都是树的高度,不是常数。

想一下为什么我们需要用递归或者栈来实现中序遍历?因为从根结点开始进入左子树之后,遍历完了左子树还需要回到根结点,然后再进入右子树继续遍历。但是如果你没有栈,你就没法从左子树回到根结点了,因为左子树中没有结点能指到根结点。

我们需要解决的就是这个问题,这里我们引入 Morris 遍历算法

下图是一个二叉搜索树例子:

v2-182884d64c3aea326bfe7814cafa3d0e_b.jpg


我们用递归来做中序遍历,访问结点的顺序是 4212346567 (这个序列就是 Morris 遍历得到的序列)。注意到非叶子结点 246 会被访问两次,第一次是作为根结点进入左子树,第二次是递归返回了,中序遍历到自己了。

那么不用递归或者栈,我们怎么在第二次成功返回根结点呢?注意到叶子结点的左右儿子都是空的,所以可以利用它们来指向根结点。

用结点 4 举个例子。首先访问 4 ,然后遍历它的左子树。左子树的最后一个遍历的结点是 3 ,那么我们就把 3 的右儿子指向根结点 4 。这样遍历完左子树之后,还能通过 3 的右儿子回到根结点 4 ,接着继续遍历右子树。

所以在第一次访问根结点时,首先要找出它左子树中最右边的那个叶子结点,把它的右儿子指向根结点。然后才能放心地递归遍历左子树,不用担心回不去啦。

具体实现的时候还有一些细节,看代码更好理解,我都写在注释里面了。

代码

c++

        /**  * Definition for a binary tree node.  * struct TreeNode {  * int val;  * TreeNode *left;  * TreeNode *right;  * TreeNode(int x) : val(x), left(NULL), right(NULL) {}  * };  */
class Solution {
public:
    void recoverTree(TreeNode* root) {
        TreeNode *x = NULL, *y = NULL, *pre = NULL, *rightmost = NULL;
        while (root) {
            // 如果有左子树,就递归遍历左子树。             if (root->left) {
                rightmost = root->left;
                // 找出左子树的最右边一个叶子结点                 while (rightmost->right && rightmost->right != root) {
                    rightmost = rightmost->right;
                }
                // 如果左子树最右边的叶子结点的右儿子是空的,                 // 那就说明根结点是第一次访问,那么就把它的右儿子指向根结点。                 // 然后递归遍历左子树。                 if (rightmost->right != root) {
                    rightmost->right = root;
                    root = root->left;
                // 否则的话说明根结点是第二次访问了,                 // 那就说明左子树已经递归完毕了,                 // 那么就判断一下是否存在逆序对。                 // 记得把左子树最右叶子结点的右儿子改回空指针。                 // 然后递归遍历右子树了。                 } else {
                    if (pre && pre->val > root->val) {
                        if (x == NULL) x = pre;
                        y = root;
                    }
                    rightmost->right = NULL;
                    pre = root;
                    root = root->right;
                }
            // 如果没有左子树,那就直接遍历右子树,同时判断是否存在逆序对。             } else {
                if (pre && pre->val > root->val) {
                    if (x == NULL) x = pre;
                    y = root;
                }
                pre = root;
                root = root->right;
            }
        }
        swap(x->val, y->val);
    }
};

      

参考资料

[1]

LeetCode 99. 恢复二叉搜索树: leetcode-cn.com/problem

算法码上来 文章被收录于专栏

公众号「算法码上来」。godweiyang带你学习算法,不管是编程算法,还是深度学习、自然语言处理算法都一网打尽,更有各种计算机新鲜知识和你分享。别急,算法码上来。

全部评论

相关推荐

10-15 03:05
门头沟学院 Java
CADILLAC_:凯文:我的邮箱是死了吗?
点赞 评论 收藏
分享
点赞 评论 收藏
分享
点赞 收藏 评论
分享
牛客网
牛客企业服务