【MySQL】MySQL分库分表详解

目录

一、前言

1.1 数据量

1.2 磁盘

1.3 数据库连接

二、垂直拆分 or 水平拆分?

三、垂直拆分

3.1 垂直分库

3.2 垂直分表

3.3 垂直拆分的优缺点

四、水平拆分

4.1 水平分表

4.2 水平分库分表

4.3 水平拆分的优缺点

五、几种常用的分库分表的策略

5.1 根据数值范围

5.2 根据数值取模

5.3 根据地理位置

六、分库分表后带来的问题

6.1 事务一致性问题

6.1.1 分布式事务

6.1.2 最终一致性

6.2 跨节点关联查询 join 问题

6.2.1 全局表

6.2.2 字段冗余

6.2.3 数据组装

6.2.4 ER分片

6.3 跨节点分页、排序、函数问题

6.4 全局主键避重问题

6.4.1 UUID

6.4.2 结合数据库维护主键ID表

6.4.3 Snowflake分布式自增ID算法

6.5 数据迁移、扩容问题

七. 什么时候考虑切分

7.1 能不切分尽量不要切分

7.2 数据量过大,正常运维影响业务访问

7.3 随着业务发展,需要对某些字段垂直拆分

7.4 数据量快速增长

7.5 安全性和可用性

八、案例分析

8.1 用户中心业务场景

8.2 水平切分方法

8.3 非uid的查询方法

8.3.1 建立非uid属性到uid的映射关系

8.3.2 前台与后台分离

九、使用分库分表中间件


一、前言

在互联网还未崛起的时代,我们的传统应用都有这样一个特点:访问量、数据量都比较小,单库单表都完全可以支撑整个业务。随着互联网的发展和用户规模的迅速扩大,对系统的要求也越来越高。因此传统的MySQL单库单表架构的性能问题就暴露出来了。而有下面几个因素会影响数据库性能:

1.1 数据量

MySQL单库数据量在5000万以内性能比较好,超过阈值后性能会随着数据量的增大而变弱。MySQL单表数据量是500w-1000w之间性能比较好,超过1000w性能也会下降。

 

1.2 磁盘

因为单个服务的磁盘空间是有限制的,如果并发压力下,所有的请求都访问同一个节点,肯定会对磁盘IO造成非常大的影响。

 

1.3 数据库连接

数据库连接是非常稀少的资源,如果一个库里既有用户、商品、订单相关的数据,当海量用户同时操作时,数据库连接就很可能成为瓶颈。

 

为了提升性能,所以我们必须要解决上述几个问题,那就有必要引进分库分表

 

二、垂直拆分 or 水平拆分?

关系型数据库本身比较容易成为系统瓶颈,单机存储容量、连接数、处理能力都有限。当单表的数据量达到1000W或100G以后,由于查询维度较多,即使添加从库、优化索引,做很多操作时性能仍下降严重。此时就要考虑对其进行切分了,切分的目的就在于减少数据库的负担,缩短查询时间。

数据库分布式核心内容无非就是数据切分(Sharding,以及切分后对数据的定位、整合。数据切分就是将数据分散存储到多个数据库中,使得单一数据库中的数据量变小,通过扩充主机的数量缓解单一数据库的性能问题,从而达到提升数据库操作性能的目的。

数据切分根据其切分类型,可以分为两种方式:垂直(纵向)切分水平(横向)切分

当我们单个库太大时,我们先要看一下是因为表太多还是数据量太大,如果是表太多,则应该将部分表进行迁移(可以按业务区分),这就是所谓的垂直切分。如果是数据量太大,则需要将表拆成更多的小表,来减少单表的数据量,这就是所谓的水平拆分

 

三、垂直拆分

垂直切分常见有垂直分库垂直分表两种。

 

3.1 垂直分库

垂直分库针对的是一个系统中的不同业务进行拆分,比如用户一个库,商品一个库,订单一个库。 一个购物网站对外提供服务时,会同时对用户、商品、订单表进行操作。没拆分之前, 全部都是落到单一的库上的,这会让数据库的单库处理能力成为瓶颈。如果垂直分库后还是将用户、商品、订单放到同一个服务器上,只是分到了不同的库,这样虽然会减少单库的压力,但是随着用户量增大,这会让整个数据库的处理能力成为瓶颈,还有单个服务器的磁盘空间、内存也会受非常大的影响。 所以我们要将其拆分到多个服务器上,这样上面的问题都解决了,以后也不会面对单机资源问题。这种做法与"微服务治理"的做法相似,每个微服务使用单独的一个数据库。

 

3.2 垂直分表

也就是“大表拆小表基于列字段进行的。一般是表中的字段较多,将不常用的, 数据较大,长度较长(比如text类型字段)的字段数据拆分到扩展表。一般是针对那种几百列的大表,也避免查询时,数据量太大造成的跨页问题MySQL底层是通过数据页存储的,一条记录占用空间过大会导致跨页(页溢出),造成额外的性能开销(IO操作变多)。另外数据库以页为单位将数据加载到内存中,而页中存储的是行数据,页大小固定,一行数据占用空间越小,页中存储的行数据就越多。这样表中字段长度较短且访问频率较高,内存能加载更多的数据,内存命中率更高,减少了磁盘IO,从而提升了数据库性能

 

3.3 垂直拆分的优缺点

优点:

  • 解决业务系统层面的耦合,业务清晰
  • 与微服务的治理类似,也能对不同业务的数据进行分级管理、维护、监控、扩展等
  • 高并发场景下,垂直切分一定程度的提升IO、数据库连接数、单机硬件资源的瓶颈

缺点:

  • 部分表无法join,只能通过接口聚合方式解决,提升了开发的复杂度
  • 分布式事务处理复杂
  • 依然存在单表数据量过大的问题(需要水平切分)

 

四、水平拆分

当一个应用难以再细粒度的垂直切分,或切分后数据量行数巨大,存在单库读写、存储性能瓶颈,这时候就需要进行水平切分了。

水平切分分为库内分表分库分表,是根据表内数据内在的逻辑关系,将同一个表按不同的条件分散到多个数据库或多个表中,每个表中只包含一部分数据,从而使得单个表的数据量变小,达到分布式的效果。如图所示:

 

4.1 水平分表

和垂直分表有一点类似,不过垂直分表是基于列的,而水平分表是基于全表的。水平拆分可以大大减少单表数据量,提升查询效率。这里的水平分表指的是在一个数据库进行的库内分表

库内分表只解决了单一表数据量过大的问题,但没有将表分布到不同机器的库上,因此对于减轻MySQL数据库的压力来说,帮助不是很大,大家还是竞争同一个物理机的CPU、内存、网络IO,最好通过分库分表来解决。

 

4.2 水平分库分表

将单张表的数据切分到多个服务器上去,每个服务器具有相同的库与表,只是表中数据集合不同。 水平分库分表能够有效的缓解单机和单库的性能瓶颈和压力,突破IO、连接数、硬件资源等的瓶颈。

 

4.3 水平拆分的优缺点

优点:

  • 不存在单库数据量过大、高并发的性能瓶颈,提升系统稳定性和负载能力
  • 应用端改造较小,不需要拆分业务模块

缺点:

  • 跨分片的事务一致性难以保证
  • 跨库的join关联查询性能较差
  • 数据多次扩展难度和维护量极大

 

五、几种常用的分库分表的策略

5.1 根据数值范围

按照时间区间或ID区间来切分。例如:按日期将不同月甚至是日的数据分散到不同的库中;将userId1~9999的记录分到第一个库,10000~20000的分到第二个库,以此类推。某种意义上,某些系统中使用的"冷热数据分离",将一些使用较少的历史数据迁移到其他库中,业务功能上只提供热点数据的查询,也是类似的实践。

这样的优点在于:

  • 单表大小可控
  • 天然便于水平扩展,后期如果想对整个分片集群扩容时,只需要添加节点即可,无需对其他分片的数据进行迁移
  • 使用分片字段进行范围查找时,连续分片可快速定位分片进行快速查询,有效避免跨分片查询的问题。

缺点:

  • 热点数据成为性能瓶颈。连续分片可能存在数据热点,例如按时间字段分片,有些分片存储最近时间段内的数据,可能会被频繁的读写,而有些分片存储的历史数据,则很少被查询

 

5.2 根据数值取模

一般采用hash取模mod的切分方式,例如:将 Customer 表根据 cusno 字段切分到4个库中,余数为0的放到第一个库,余数为1的放到第二个库,以此类推。这样同一个用户的数据会分散到同一个库中,如果查询条件带有cusno字段,则可明确定位到相应库去查询。再比如说有用户表user,将其分成3个表user0,user1,user2.路由规则是对3取模,uid=1,对应到的是user1,uid=2,对应的是user2.

优点:

  • 数据分片相对比较均匀,不容易出现热点和并发访问的瓶颈

缺点:

  • 后期分片集群扩容时,需要迁移旧的数据(使用一致性hash算法能较好的避免这个问题),否则会导致历史数据失效。
  • 容易面临跨分片查询的复杂问题。比如上例中,如果频繁用到的查询条件中不带cusno时,将会导致无法定位数据库,从而需要同时向4个库发起查询,再在内存中合并数据,取最小集返回给应用,分库反而成为拖累。

 

5.3 根据地理位置

根据地理位置,将相同地区的放到一张表中,比如华南区一个表,华北一个表。

 

六、分库分表后带来的问题

分库分表能有效的缓解单机和单库带来的性能瓶颈和压力,***IO、硬件资源、连接数的瓶颈,同时也带来了一些问题。下面将描述这些技术挑战以及对应的解决思路。 

6.1 事务一致性问题

6.1.1 分布式事务

当更新内容同时分布在不同库中,不可避免会带来跨库事务问题。跨分片事务也是分布式事务,没有简单的方案,一般可使用"XA协议""两阶段提交"处理

分布式事务的几种解决方案:

  1. 使用分布式事务中间件
  2. 使用MySQL自带的针对跨库的事务一致性方案(XA),不过性能要比单库的慢10倍左右。
  3. 能否避免掉跨库操作(比如将用户和商品放在同一个库中)

 

分布式事务能最大限度保证了数据库操作的原子性。但在提交事务时需要协调多个节点,推后了提交事务的时间点,延长了事务的执行时间。导致事务在访问共享资源时发生冲突或死锁的概率增高。随着数据库节点的增多,这种趋势会越来越严重,从而成为系统在数据库层面上水平扩展的枷锁。

6.1.2 最终一致性

对于那些性能要求很高,但对一致性要求不高的系统,往往不苛求系统的实时一致性,只要在允许的时间段内达到最终一致性即可,可采用事务补偿的方式与事务在执行中发生错误后立即回滚的方式不同,事务补偿是一种事后检查补救的措施,一些常见的实现方法有:对数据进行对账检查,基于日志进行对比,定期同标准数据来源进行同步等等。事务补偿还要结合业务系统来考虑。

 

6.2 跨节点关联查询 join 问题

切分之前,系统中很多列表和详情页所需的数据可以通过sql join来完成。而切分之后,数据可能分布在不同的节点上,此时join带来的问题就比较麻烦了,考虑到性能,尽量避免使用join查询。

解决这个问题的一些方法:

6.2.1 全局表

全局表,也可看做是"数据字典表",就是系统中所有模块都可能依赖的一些表,为了避免跨库join查询,可以将这类表在每个数据库中都保存一份。这些数据通常很少会进行修改,所以也不担心一致性的问题。

 

6.2.2 字段冗余

一种典型的反范式设计,利用空间换时间,为了性能而避免join查询。例如:订单表保存userId时候,也将userName冗余保存一份,这样查询订单详情时就不需要再去查询"买家user"了。

但这种方法适用场景也有限,比较适用于依赖字段比较少的情况。而冗余字段的数据一致性也较难保证,就像上面订单表的例子,买家修改了userName后,是否需要在历史订单中同步更新呢?这也要结合实际业务场景进行考虑。

 

6.2.3 数据组装

在系统层面,分两次查询,第一次查询的结果集中找出关联数据id,然后根据id发起第二次请求得到关联数据。最后将获得到的数据进行字段拼装。

 

6.2.4 ER分片

关系型数据库中,如果可以先确定表之间的关联关系,并将那些存在关联关系的表记录存放在同一个分片上,那么就能较好的避免跨分片join问题。在1:11:n的情况下,通常按照主表的ID主键切分。如下图所示:

这样一来,Data Node1上面的order订单表与orderdetail订单详情表就可以通过orderId进行局部的关联查询了,Data Node2上也一样。

 

6.3 跨节点分页、排序、函数问题

跨节点多库进行查询时,会出现limit分页、order by排序等问题。分页需要按照指定字段进行排序,当排序字段就是分片字段时,通过分片规则就比较容易定位到指定的分片;当排序字段非分片字段时,就变得比较复杂了。需要先在不同的分片节点中将数据进行排序并返回,然后将不同分片返回的结果集进行汇总和再次排序,最终返回给用户。如图所示:

上图中只是取第一页的数据,对性能影响还不是很大。但是如果取得页数很大,情况则变得复杂很多,因为各分片节点中的数据可能是随机的,为了排序的准确性,需要将所有节点的前N页数据都排序好做合并,最后再进行整体的排序,这样的操作时很耗费CPU和内存资源的,所以页数越大,系统的性能也会越差。

在使用MaxMinSumCount之类的函数进行计算的时候,也需要先在每个分片上执行相应的函数,然后将各个分片的结果集进行汇总和再次计算,最终将结果返回。如图所示:

总之因为我们是将数据分散存储到不同的库、表里的,当我们查询指定数据列表时,数据来源于不同的子库或者子表,就必然会引发结果集合并、排序的问题。如果每次查询都需要排序、合并等操作,性能肯定会受非常大的影响。走缓存是一种解决方案。

 

6.4 全局主键避重问题

在分库分表环境中,由于表中数据同时存在不同数据库中,主键值平时使用的自增长将无用武之地,某个分区数据库自生成的ID无法保证全局唯一。因此需要单独设计全局主键,以避免跨库主键重复问题。有一些常见的主键生成策略:

6.4.1 UUID

UUID标准形式包含32个16进制数字,分为5段,形式为8-4-4-4-12的36个字符,例如:550e8400-e29b-41d4-a716-446655440000

UUID是主键是最简单的方案,本地生成,性能高,没有网络耗时。但缺点也很明显,由于UUID非常长,会占用大量的存储空间;另外,作为主键建立索引和基于索引进行查询时都会存在性能问题,在InnoDB下,UUID的无序性会引起数据位置频繁变动。

 

6.4.2 结合数据库维护主键ID

在数据库中建立 sequence 表:

CREATE TABLE `sequence` ( 
  `id` bigint(20) unsigned NOT NULL auto_increment, 
  `stub` char(1) NOT NULL default '', 
  PRIMARY KEY  (`id`), 
  UNIQUE KEY `stub` (`stub`) 
) ENGINE=MyISAM;

stub字段设置为唯一索引,同一stub值在sequence表中只有一条记录,可以同时为多张表生成全局ID。sequence表的内容,如下所示:

+-------------------+------+  
| id                | stub | 
+-------------------+------+  
| 72157623227190423 |    a | 
+-------------------+------+ 

使用 MyISAM 存储引擎而不是 InnoDB,以获取更高的性能。MyISAM使用的是表级别的锁,对表的读写是串行的,所以不用担心在并发时两次读取同一个ID值。

当需要全局唯一的64位ID时,执行:

REPLACE INTO sequence (stub) VALUES ('a');  
SELECT LAST_INSERT_ID(); 

这两条语句是Connection级别的,select last_insert_id() 必须与 replace into 在同一数据库连接下才能得到刚刚插入的新ID。

使用replace into代替insert into好处是避免了表行数过大,不需要另外定期清理。

此方案较为简单,但缺点也明显:存在单点问题,强依赖DB,当DB异常时,整个系统都不可用。配置主从可以增加可用性,但当主库挂了,主从切换时,数据一致性在特殊情况下难以保证。另外性能瓶颈限制在单台MySQL的读写性能。

flickr团队使用的一种主键生成策略,与上面的sequence表方案类似,但更好的解决了单点和性能瓶颈的问题。

这一方案的整体思想是:建立2个以上的全局ID生成的服务器,每个服务器上只部署一个数据库,每个库有一张sequence表用于记录当前全局ID。表中ID增长的步长是库的数量,起始值依次错开,这样能将ID的生成散列到各个数据库上。如下图所示:

由两个数据库服务器生成ID,设置不同的auto_increment值。第一台sequence的起始值为1,每次步长增长2,另一台的sequence起始值为2,每次步长增长也是2。结果第一台生成的ID都是奇数(1, 3, 5, 7 ...),第二台生成的ID都是偶数(2, 4, 6, 8 ...)。

这种方案将生成ID的压力均匀分布在两台机器上。同时提供了系统容错,第一台出现了错误,可以自动切换到第二台机器上获取ID。但有以下几个缺点:系统添加机器,水平扩展时较复杂;每次获取ID都要读写一次DB,DB的压力还是很大,只能靠堆机器来提升性能。

可以基于flickr的方案继续优化,使用批量的方式降低数据库的写压力,每次获取一段区间的ID号段,用完之后再去数据库获取,可以大大减轻数据库的压力。如下图所示:

还是使用两台DB保证可用性,数据库中只存储当前的最大ID。ID生成服务每次批量拉取6个ID,先将max_id修改为5,当应用访问ID生成服务时,就不需要访问数据库,从号段缓存中依次派发0~5的ID。当这些ID发完后,再将max_id修改为11,下次就能派发6~11的ID。于是,数据库的压力降低为原来的1/6。

 

6.4.3 Snowflake分布式自增ID算法

Twitter的snowflake算法解决了分布式系统生成全局ID的需求,生成64位的Long型数字,组成部分:

  • 第一位未使用
  • 接下来41位是毫秒级时间,41位的长度可以表示69年的时间
  • 5位datacenterId,5位workerId。10位的长度最多支持部署1024个节点
  • 最后12位是毫秒内的计数,12位的计数顺序号支持每个节点每毫秒产生4096个ID序列

这样的好处是:毫秒数在高位,生成的ID整体上按时间趋势递增;不依赖第三方系统,稳定性和效率较高,理论上QPS约为409.6w/s(1000*2^12),并且整个分布式系统内不会产生ID碰撞;可根据自身业务灵活分配bit位。

不足就在于:强依赖机器时钟,如果时钟回拨,则可能导致生成ID重复。

综上

结合数据库和snowflake的唯一ID方案,可以参考业界较为成熟的解法:Leaf——美团点评分布式ID生成系统,并考虑到了高可用、容灾、分布式下时钟等问题。

 

6.5 数据迁移、扩容问题

当业务高速发展,面临性能和存储的瓶颈时,才会考虑分片设计,此时就不可避免的需要考虑历史数据迁移的问题。一般做法是先读出历史数据,然后按指定的分片规则再将数据写入到各个分片节点中。此外还需要根据当前的数据量和QPS,以及业务发展的速度,进行容量规划,推算出大概需要多少分片(一般建议单个分片上的单表数据量不超过1000W)

如果采用数值范围分片,只需要添加节点就可以进行扩容了,不需要对分片数据迁移。如果采用的是数值取模分片,针对数据量的递增,可能需要动态的增加表,此时因为reHash有可能导致数据迁移问题,则考虑后期的扩容问题就相对比较麻烦

 

. 什么时候考虑切分

下面讲述一下什么时候需要考虑做数据切分。

7.1 能不切分尽量不要切分

并不是所有表都需要进行切分,主要还是看数据的增长速度。切分后会在某种程度上提升业务的复杂度,数据库除了承载数据的存储和查询外,协助业务更好的实现需求也是其重要工作之一。

不到万不得已不用轻易使用分库分表这个大招,避免"过度设计""过早优化"。分库分表之前,不要为分而分,先尽力去做力所能及的事情,例如:升级硬件、升级网络、读写分离、索引优化等等。当数据量达到单表的瓶颈时候,再考虑分库分表。

 

7.2 数据量过大,正常运维影响业务访问

这里说的运维,指:

  1. 对数据库备份,如果单表太大,备份时需要大量的磁盘IO和网络IO。例如1T的数据,网络传输占50MB时候,需要20000秒才能传输完毕,整个过程的风险都是比较高的
  2. 对一个很大的表进行DDL修改时,MySQL会锁住全表,这个时间会很长,这段时间业务不能访问此表,影响很大。如果使用pt-online-schema-change,使用过程中会创建触发器和影子表,也需要很长的时间。在此操作过程中,都算为风险时间。将数据表拆分,总量减少,有助于降低这个风险。
  3. 大表会经常访问与更新,就更有可能出现锁等待。将数据切分,用空间换时间,变相降低访问压力

 

7.3 随着业务发展,需要对某些字段垂直拆分

举个例子,假如项目一开始设计的用户表如下:

id                   bigint             #用户的ID
name                 varchar            #用户的名字
last_login_time      datetime           #最近登录时间
personal_info        text               #私人信息
.....                                   #其他信息字段

在项目初始阶段,这种设计是满足简单的业务需求的,也方便快速迭***。而当业务快速发展时,用户量从10w激增到10亿,用户非常的活跃,每次登录会更新 last_login_name 字段,使得 user 表被不断update,压力很大。而其他字段:id, name, personal_info 是不变的或很少更新的,此时在业务角度,就要将 last_login_time 拆分出去,新建一个 user_time 表。

personal_info 属性是更新和查询频率较低的,并且text字段占据了太多的空间。这时候,就要对此垂直拆分出 user_ext 表了。

 

7.4 数据量快速增长

随着业务的快速发展,单表中的数据量会持续增长,当性能接近瓶颈时,就需要考虑水平切分,做分库分表了。此时一定要选择合适的切分规则,提前预估好数据容量

 

7.5 安全性和可用性

鸡蛋不要放在一个篮子里。在业务层面上垂直切分,将不相关的业务的数据库分隔,因为每个业务的数据量、访问量都不同,不能因为一个业务把数据库搞挂而牵连到其他业务。利用垂直切分,一个数据库出现问题,只会影响到部分业务,不会使所有的业务都瘫痪。利用水平切分,当一个数据库出现问题时,不会影响到100%的用户,每个库只承担业务的一部分数据,这样整体的可用性就能提高。

 

八、案例分析

8.1 用户中心业务场景

用户中心是一个非常常见的业务,主要提供用户注册、登录、查询/修改等功能,其核心表为:

User(uid, login_name, passwd, sex, age, nickname)
uid为用户ID,  主键
login_name, passwd, sex, age, nickname,  用户属性

任何脱离业务的架构设计都是耍流氓,在进行分库分表前,需要对业务场景需求进行梳理:

  • 用户侧:前台访问,访问量较大,需要保证高可用和高一致性。主要有两类需求:
    • 用户登录:通过login_name/phone/email查询用户信息,1%请求属于这种类型
    • 用户信息查询:登录之后,通过uid来查询用户信息,99%请求属这种类型
  • 运营侧:后台访问,支持运营需求,按照年龄、性别、登陆时间、注册时间等进行分页的查询。是内部系统,访问量较低,对可用性、一致性的要求不高。

 

8.2 水平切分方法

当数据量越来越大时,需要对数据库进行水平切分,上文描述的切分方法有"根据数值范围"和"根据数值取模"。

"根据数值范围":以主键uid为划分依据,按uid的范围将数据水平切分到多个数据库上。例如:user-db1存储uid范围为0~1000w的数据,user-db2存储uid范围为1000w~2000wuid数据。

  • 优点是:扩容简单,如果容量不够,只要增加新db即可。
  • 不足是:请求量不均匀,一般新注册的用户活跃度会比较高,所以新的user-db2会比user-db1负载高,导致服务器利用率不平衡

 

"根据数值取模":也是以主键uid为划分依据,按uid取模的值将数据水平切分到多个数据库上。例如:user-db1存储uid取模得1的数据,user-db2存储uid取模得0uid数据。

  • 优点是:数据量和请求量分布均均匀
  • 不足是:扩容麻烦,当容量不够时,新增加db,需要rehash。需要考虑对数据进行平滑的迁移。

 

8.3 uid的查询方法

水平切分后,对于按uid查询的需求能很好的满足,可以直接路由到具体数据库。而按非uid的查询,例如login_name,就不知道具体该访问哪个库了,此时需要遍历所有库,性能会降低很多。

对于用户侧,可以采用"建立非uid属性到uid的映射关系"的方案;对于运营侧,可以采用"前台与后台分离"的方案

8.3.1 建立非uid属性到uid的映射关系

1)映射关系

例如:login_name不能直接定位到数据库,可以建立login_nameuid的映射关系,用索引表或缓存来存储。当访问login_name时,先通过映射表查询出login_name对应的uid,再通过uid定位到具体的库。

映射表只有两列,可以承载很多数据,当数据量过大时,也可以对映射表再做水平切分。这类kv格式的索引结构,可以很好的使用cache来优化查询性能,而且映射关系不会频繁变更,缓存命中率会很高。

2)基因法

分库基因:假如通过uid分库,分为8个库,采用uid%8的方式进行路由,此时是由uid的最后3bit来决定这行User数据具体落到哪个库上,那么这3bit可以看为分库基因。

上面的映射关系的方法需要额外存储映射表,按非uid字段查询时,还需要多一次数据库或cache的访问。如果想要消除多余的存储和查询,可以通过f函数取login_name的基因作为uid的分库基因。生成uid时,参考上文所述的分布式唯一ID生成方案,再加上最后3位bit值=f(login_name)。当查询login_name时,只需计算f(login_name)%8的值,就可以定位到具体的库。不过这样需要提前做好容量规划,预估未来几年的数据量需要分多少库,要预留一定bit的分库基因。

 

8.3.2 前台与后台分离

对于用户侧,主要需求是以单行查询为主,需要建立login_name/phone/email到uid的映射关系,可以解决这些字段的查询问题。

而对于运营侧,很多批量分页且条件多样的查询,这类查询计算量大,返回数据量大,对数据库的性能消耗较高。此时,如果和用户侧公用同一批服务或数据库,可能因为后台的少量请求,占用大量数据库资源,而导致用户侧访问性能降低或超时。

这类业务最好采用"前台与后台分离"的方案,运营侧后台业务抽取独立的servicedb,解决和前台业务系统的耦合。由于运营侧对可用性、一致性的要求不高,可以不访问实时库,而是通过binlog异步同步数据到运营库进行访问。在数据量很大的情况下,还可以使用ES搜索引擎或Hive来满足后台复杂的查询方式。

 

九、使用分库分表中间件

站在巨人的肩膀上能省力很多,目前分库分表已经有一些较为成熟的开源解决方案:

简单介绍其中的两个中简介:

Mycat

Mycat发展到现在,适用的场景已经很丰富,而且不断有新用户给出新的创新性的方案,以下是几个典型的应用场景:

  • 单纯的读写分离,此时配置最为简单,支持读写分离,主从切换
  • 分库分表,对于超过1000万的表进行分片,最大支持1000亿的单表分片
  • 多租户应用,每个应用一个库,但应用程序只连接Mycat,从而不改造程序本身,实现多租户化报表系统,借助于Mycat的分表能力,处理大规模报表的统计
  • 替代Hbase,分析大数据作为海量数据实时查询的一种简单有效方案,比如100亿条频繁查询的记录需要在3秒内查询出来结果,除了基于主键的查询,还可能存在范围查询或其他属性查询,此时Mycat可能是最简单有效的选择.

Sharding-JDBC

当当网开发的简单易用、轻量级的中间件。

 

一些分库分表中间件的简介图:


参考资料:https://www.cnblogs.com/butterfly100/p/9034281.html

全部评论

相关推荐

点赞 评论 收藏
分享
评论
点赞
3
分享
正在热议
# 25届秋招总结 #
440109次浏览 4488人参与
# 春招别灰心,我们一人来一句鼓励 #
41383次浏览 524人参与
# 阿里云管培生offer #
119664次浏览 2219人参与
# 地方国企笔面经互助 #
7914次浏览 18人参与
# 虾皮求职进展汇总 #
113497次浏览 880人参与
# 实习,投递多份简历没人回复怎么办 #
2453743次浏览 34846人参与
# 北方华创开奖 #
107248次浏览 599人参与
# 实习必须要去大厂吗? #
55563次浏览 960人参与
# 同bg的你秋招战况如何? #
75265次浏览 549人参与
# 提前批简历挂麻了怎么办 #
149784次浏览 1977人参与
# 投递实习岗位前的准备 #
1195605次浏览 18546人参与
# 你投递的公司有几家约面了? #
33166次浏览 188人参与
# 双非本科求职如何逆袭 #
661802次浏览 7394人参与
# 机械人春招想让哪家公司来捞你? #
157587次浏览 2267人参与
# 如果公司给你放一天假,你会怎么度过? #
4717次浏览 54人参与
# 如果你有一天可以担任公司的CEO,你会做哪三件事? #
11266次浏览 263人参与
# 发工资后,你做的第一件事是什么 #
12359次浏览 61人参与
# 工作中,努力重要还是选择重要? #
35546次浏览 384人参与
# 参加完秋招的机械人,还参加春招吗? #
20072次浏览 240人参与
# 实习想申请秋招offer,能不能argue薪资 #
39211次浏览 314人参与
# 我的上岸简历长这样 #
451881次浏览 8088人参与
# 非技术岗是怎么找实习的 #
155831次浏览 2120人参与
牛客网
牛客企业服务