南邮数据结构实验3.4:以邻接表为存储结构的图的深度、宽度优先遍历
题目:以实验3.3所示邻接表为存储结构,编写程序,实现图的深度、宽度优先遍历。
部分代码:
邻接表的单一顶点DFS:
//邻接表的单一顶点DFS
void DFS(int v,int visited[],LGraph g){
ENode *w;
printf("%d ",v); //访问顶点v
visited[v] = 1; //为顶点v打上访问标记
for(w = g.a[v];w;w = w->nextArc){ //遍历v的邻接点
if(!visited[w->adjVex]){
DFS(w->adjVex,visited,g); //若w未被访问,则递归调用DFS
}
}
}
邻接表的全图DFS:
//邻接表的全图DFS
void DFSGraph(LGraph g){
int i;
int *visited = (int*)malloc(g.n * sizeof(int)); //动态生成标记数组visted
for(i = 0;i < g.n;i ++){
visited[i] = 0; //visted数组初始化
}
for(i = 0;i < g.n;i ++){ //逐一检查每个顶点,若未被访问,则调用DFS
if(!visited[i]){
DFS(i,visited,g);
}
}
free(visited); //释放visted数组
}
邻接表的单一顶点BFS:
//邻接表的单一顶点BFS
void BFS(int v,int visited[],LGraph g){
ENode *w;
Queue q;
Create(&q,g.n); //初始化队列
visited[v] = 1; //为顶点v打上访问标记
printf("%d ",v); //访问顶点v
EnQueue(&q,v); //将顶点v放入队列
while(!IsEmpty(&q)){
Front(&q,&v);
DeQueue(&q); //队首顶点出队列
for(w = g.a[v];w;w = w->nextArc){ //遍历v的所有邻接点
if(!visited[w->adjVex]){ //若w未被访问,则将其访问并放入队列
visited[w->adjVex] = 1;
printf("%d ",w->adjVex);
EnQueue(&q,w->adjVex);
}
}
}
}
邻接表的全图BFS:
//邻接表的全图BFS
void BFSGraph(LGraph g){
int i;
int *visited = (int*)malloc(g.n * sizeof(int)); //动态生成visited数组
for(i = 0;i < g.n;i ++){ //初始化visited数组
visited[i] = 0;
}
for(i = 0 ;i < g.n;i ++){ //逐一检查每个顶点,若未被访问,则调用BFS
if(!visited[i]){
BFS(i,visited,g);
}
}
free(visited);
}
完整程序:
#include<stdio.h>
#include<stdlib.h>
#include <windows.h>
#define ERROR 0
#define OK 1
#define Overflow 2 //表示上溢
#define Underflow 3 //表示下溢
#define NotPresent 4 //表示元素不存在
#define Duplicate 5 //表示有重复元素
typedef int ElemType;
typedef int Status;
//邻接表的结构体定义
typedef struct ENode{
int adjVex; //任意顶点u相邻的顶点
ElemType w; //边的权值
struct ENode *nextArc; //指向下一个边结点
}ENode;
typedef struct{
int n; //图的当前顶点数
int e; //图的当前边数
ENode **a; //指向一维指针数组
}LGraph;
//循环队列的结构体定义
typedef struct{
int front;
int rear;
int maxSize; //最大容量
ElemType *element;
}Queue;
//创建一个能容纳mSize个单元的空队列
void Create(Queue *Q,int mSize){
Q->maxSize=mSize;
Q->element=(ElemType*)malloc(sizeof(ElemType)*mSize);
Q->front=Q->rear=0;
}
//判断队列是否为空,若是,则返回TRUE;否则返回FALSE
BOOL IsEmpty(Queue *Q){
return Q->front==Q->rear;
}
//判断队列是否已满,若是,则返回TRUE,否则返回FALSE
BOOL IsFULL(Queue *Q){
return (Q->rear+1)%Q->maxSize==Q->front;
}
//获取队头元素,并通过x返回.若操作成功,则返回TRUE,否则返回FALSE
BOOL Front(Queue *Q,ElemType *x){
if(IsEmpty(Q)) //空队列处理
return FALSE;
*x=Q->element[(Q->front+1)%Q->maxSize];
return TRUE;
}
//入队.在队列Q的队尾插入元素x(入队操作)。操作成功,则返回TRUE,否则返回FALSE
BOOL EnQueue(Queue *Q,ElemType x){
if(IsFULL(Q)) //溢出处理
return FALSE;
Q->rear=(Q->rear+1)%Q->maxSize;
Q->element[Q->rear]=x;
return TRUE;
}
//出队.从队列Q中删除队头元素(出队操作)。操作成功,则返回TRUE,否则返回FALSE
BOOL DeQueue(Queue *Q){
if(IsEmpty(Q)){ //空队列处理
return FALSE;
}
Q->front=(Q->front+1)%Q->maxSize;
return TRUE;
}
//邻接表的初始化
Status Init(LGraph *lg,int nSize){
int i;
lg->n = nSize;
lg->e = 0;
lg->a = (ENode**)malloc(nSize*sizeof(ENode*)); //动态生成长度为n的一维指针数组
if(!lg->a) return ERROR;
else{
for(i = 0;i < lg->n;i ++){
lg->a[i] = NULL; //将指针数组a置空
}
return OK;
}
}
//邻接表的搜索边
Status Exist(LGraph *lg,int u,int v){
ENode *p;
if(u < 0||v < 0||u > lg->n-1||v > lg->n-1 ||u == v) return ERROR;
p = lg->a[u]; //指针p指向顶点u的单链表的第一个边结点
while(p && p->adjVex != v){
p = p->nextArc;
}
if(!p) return ERROR; //若未找到此边,则返回ERROR
else return OK;
}
//邻接表的插入边
Status Insert(LGraph *lg,int u,int v,ElemType w){
ENode *p;
if(u < 0||v < 0||u > lg->n-1||v > lg->n-1 ||u == v) return ERROR;
if(Exist(lg,u,v)) return Duplicate; //此边已存在,返回错误
p = (ENode*)malloc(sizeof(ENode)); //为新的边结点分配存储空间
p->adjVex = v;
p->w = w;
p -> nextArc = lg->a[u]; //将新的边结点插入单链表的最前面
lg->a[u] = p;
lg->e ++; //边加1
return OK;
}
//邻接表的单一顶点DFS
void DFS(int v,int visited[],LGraph g){
ENode *w;
printf("%d ",v); //访问顶点v
visited[v] = 1; //为顶点v打上访问标记
for(w = g.a[v];w;w = w->nextArc){ //遍历v的邻接点
if(!visited[w->adjVex]){
DFS(w->adjVex,visited,g); //若w未被访问,则递归调用DFS
}
}
}
//邻接表的全图DFS
void DFSGraph(LGraph g){
int i;
int *visited = (int*)malloc(g.n * sizeof(int)); //动态生成标记数组visted
for(i = 0;i < g.n;i ++){
visited[i] = 0; //visted数组初始化
}
for(i = 0;i < g.n;i ++){ //逐一检查每个顶点,若未被访问,则调用DFS
if(!visited[i]){
DFS(i,visited,g);
}
}
free(visited); //释放visted数组
}
//邻接表的单一顶点BFS
void BFS(int v,int visited[],LGraph g){
ENode *w;
Queue q;
Create(&q,g.n); //初始化队列
visited[v] = 1; //为顶点v打上访问标记
printf("%d ",v); //访问顶点v
EnQueue(&q,v); //将顶点v放入队列
while(!IsEmpty(&q)){
Front(&q,&v);
DeQueue(&q); //队首顶点出队列
for(w = g.a[v];w;w = w->nextArc){ //遍历v的所有邻接点
if(!visited[w->adjVex]){ //若w未被访问,则将其访问并放入队列
visited[w->adjVex] = 1;
printf("%d ",w->adjVex);
EnQueue(&q,w->adjVex);
}
}
}
}
//邻接表的全图BFS
void BFSGraph(LGraph g){
int i;
int *visited = (int*)malloc(g.n * sizeof(int)); //动态生成visited数组
for(i = 0;i < g.n;i ++){ //初始化visited数组
visited[i] = 0;
}
for(i = 0 ;i < g.n;i ++){ //逐一检查每个顶点,若未被访问,则调用BFS
if(!visited[i]){
BFS(i,visited,g);
}
}
free(visited);
}
int main(){
LGraph g;
int i,u,v,enode,edge;
ElemType w;
printf("Please enter the number of the ENodes:");
scanf("%d",&enode);
Init(&g,enode);
printf("Please enter the number of the edges:");
scanf("%d",&edge);
printf("Now init the graph.\n");
for(i = 0;i < edge;i ++){
printf("Please enter the edge:");
scanf("%d%d%d",&u,&v,&w);
Insert(&g,u,v,w);
}
printf("DFS:\n");
DFSGraph(g);
printf("\nBFS:\n");
BFSGraph(g);
return 0;
}
实验结果:
版权声明:本文为博主原创文章,未经博主允许不得转载。