ICPC 2018 焦作网络预赛 L. Poor God Water
题目意思
有肉,鱼,巧克力三种食物,对于连续的三个食物,
1.这三个食物不能都相同
2.若三种食物都有的情况,巧克力不能在中间
3.如果两边是巧克力,中间不能是肉或鱼,求方案数
样例输入
1
1 2
2 1
1
2
样例输出
0
1
解题思路
杜教BM线性递推!!!
杜教牛逼!!!
使用方法:暴力前几项,放入vector,直接交。
AC代码
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <map>
#include <set>
#include <cassert>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int, int> PII;
const ll mod = 1000000007;
ll powmod(ll a, ll b)
{
ll res = 1; a %= mod;
assert(b >= 0);
for (; b; b >>= 1)
{
if (b & 1)
res = res * a%mod;
a = a * a%mod;
}
return res;
}
// head
int _, n;
namespace linear_seq
{
const int N = 10010;
ll res[N], base[N], _c[N], _md[N];
vector<int> Md;
void mul(ll *a, ll *b, int k)
{
rep(i, 0, k + k) _c[i] = 0;
rep(i, 0, k)
if (a[i])
rep(j, 0, k)
_c[i + j] = (_c[i + j] + a[i] * b[j]) % mod;
for (int i = k + k - 1; i >= k; i--)
if (_c[i])
rep(j, 0, SZ(Md))
_c[i - k + Md[j]] = (_c[i - k + Md[j]] - _c[i] * _md[Md[j]]) % mod;
rep(i, 0, k) a[i] = _c[i];
}
int solve(ll n, VI a, VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
// printf("%d\n",SZ(b));
ll ans = 0, pnt = 0;
int k = SZ(a);
assert(SZ(a) == SZ(b));
rep(i, 0, k)
_md[k - 1 - i] = -a[i]; _md[k] = 1;
Md.clear();
rep(i, 0, k)
if (_md[i] != 0) Md.push_back(i);
rep(i, 0, k)
res[i] = base[i] = 0;
res[0] = 1;
while ((1ll << pnt) <= n) pnt++;
for (int p = pnt; p >= 0; p--)
{
mul(res, res, k);
if ((n >> p) & 1)
{
for (int i = k - 1; i >= 0; i--) res[i + 1] = res[i]; res[0] = 0;
rep(j, 0, SZ(Md)) res[Md[j]] = (res[Md[j]] - res[k] * _md[Md[j]]) % mod;
}
}
rep(i, 0, k) ans = (ans + res[i] * b[i]) % mod;
if (ans < 0) ans += mod;
return ans;
}
VI BM(VI s)
{
VI C(1, 1), B(1, 1);
int L = 0, m = 1, b = 1;
rep(n, 0, SZ(s))
{
ll d = 0;
rep(i, 0, L + 1) d = (d + (ll)C[i] * s[n - i]) % mod;
if (d == 0) ++m;
else if (2 * L <= n)
{
VI T = C;
ll c = mod - d * powmod(b, mod - 2) % mod;
while (SZ(C) < SZ(B) + m) C.pb(0);
rep(i, 0, SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % mod;
L = n + 1 - L; B = T; b = d; m = 1;
}
else
{
ll c = mod - d * powmod(b, mod - 2) % mod;
while (SZ(C) < SZ(B) + m) C.pb(0);
rep(i, 0, SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % mod;
++m;
}
}
return C;
}
int gao(VI a, ll n)
{
VI c = BM(a);
c.erase(c.begin());
rep(i, 0, SZ(c)) c[i] = (mod - c[i]) % mod;
return solve(n, c, VI(a.begin(), a.begin() + SZ(c)));
}
};
int main()
{
int t;
scanf("%d",&t);
while (t--)
{
long long n;
scanf("%lld",&n);
vector<int>v({3,9,20,46,106,244,560,1286,2956,6794});
//VI{1,2,4,7,13,24}
printf("%lld\n", linear_seq::gao(v, n - 1));
}
}
//BM