[USACO10HOL]赶小猪题解

题目链接

貌似没有卡我精度?

这道题跟这道的思路和做法都挺像的,也是期望+高斯消元

\(f_u\)为一个点期望的经过次数,那么我们可以发现,炸弹在每个点爆炸的概率其实就是\(f_u*p/q\),求出每个点的\(f_i\)即可得到最终的答案,显然,每个点的期望是由相连的点的期望决定的,\(du_x\)为点\(x\)的度数,点\(x_1,x_2,x_3....x_k\)与点\(x\)相邻,则\(f[x]=\sum_{i=1}^k\frac{fx_i}{dux_i}\)

最后用高斯消元解一下每个点的期望即可,上代码

#include<bits/stdc++.h>
using namespace std;
int n,m,t,x,y;
double p,q,gai,chu,du[303],a[303][303],b[303],ans[303];
vector<int>l[303];
int main()
{
    scanf("%d%d%lf%lf",&n,&m,&p,&q);
    for(int i=1;i<=m;i++)
    {
        scanf("%d%d",&x,&y);
        l[x].push_back(y),l[y].push_back(x),du[x]++,du[y]++;
    }
    gai=p/q,b[1]=-1;
    for(int i=1;i<=n;i++)
    {
        a[i][i]=-1;
        for(int j=0;j<l[i].size();j++)
            a[i][l[i][j]]=(1-gai)*(1/du[l[i][j]]);          
    }
    for(int i=1;i<=n;i++)
    {
        t=i;
        for(int j=i+1;j<=n;j++)
            if(a[j][i]>a[j][t])
                t=j;
        if(t!=i)
        {
            for(int j=i;j<=n;j++)
                swap(a[i][j],a[t][j]);
            swap(b[i],b[t]);
        }
        if(a[i][i]!=0)
            for(int j=i+1;j<=n;j++)
            {
                chu=a[j][i]/a[i][i];
                for(int k=i;k<=n;k++)
                    a[j][k]-=a[i][k]*chu;
                b[j]-=b[i]*chu;
            }
    }
    for(int i=n;i>=1;i--)
    {
        ans[i]=b[i]/a[i][i];
        for(int j=1;j<i;j++)
            b[j]-=a[j][i]*ans[i];
    }
    for(int i=1;i<=n;i++)
        printf("%.9lf\n",fabs(ans[i]*gai));
    return 0;
}
全部评论

相关推荐

喜欢吃蛋糕仰泳鲈鱼是我的神:字节可以找个hr 给你挂了,再放池子捞
点赞 评论 收藏
分享
霁华Tel:秋招结束了,好累。我自编了一篇对话,语言别人看不懂,我觉得有某种力量在控制我的身体,我明明觉得有些东西就在眼前,但身边的人却说啥也没有,有神秘人通过电视,手机等在暗暗的给我发信号,我有时候会突然觉得身体的某一部分不属于我了。面对不同的人或场合,我表现出不一样的自己,以至于都不知道自己到底是什么样子的人。我觉得我已经做的很好,不需要其他人的建议和批评,我有些时候难以控制的兴奋,但是呼吸都让人开心。
点赞 评论 收藏
分享
评论
点赞
收藏
分享
牛客网
牛客企业服务