IJCAI填坑2 已看论文
填坑。。。
SoRec: Social Recommendation Using Probabilistic Matrix Factorization
想要解决的问题:
建模社交信任关系
Contribution:
(1) Our method can deal with missing value problem, while their methods cannot. (2) Our method is interpreted using a probabilistic factor analysis model.
(3) Complexity analysis shows that our method is more efficient than their methods and can be applied to very large datasets.
建模的方法:
Social Network Matrix Factorization
U是latent user matrices,Z是factor feature matrices
高斯和贝叶斯
然后还要考虑一个情况是:如果一个人相信大部分人,那么他的rating基本也没什么用;如果一个人被大部分人相信,那么他的rating可能用处更大,所以这里加了个权。
User Item Matrix Factorization
和社交那块建模类似
最终的优化目标和梯度:
实验
效果还不错吧
Conclusion
In the future, we will explore whether the distrust information is useful to increase the prediction quality, and how to incorporate it.
Reference
可以关注下
Maximum Margin Matrix Factorization:MMMF
Probabilistic Matrix Factorization: PMF
Constrained Probabilistic Matrix Factorization: CPMF