MQ相关(优缺点,技术选型,高可用)
消息队列有什么优点和缺点
优点:
解耦
异步
削峰
当不使用MQ时
当使用MQ时
缺点:
1.系统可用性降低:系统引入的外部依赖越多,越容易挂掉,本来你就是A系统调用BCD三个系统的接口就好了,人ABCD四个系统好好的,没啥问题,你偏加个MQ进来,万一MQ挂了咋整?MQ挂了,整套系统崩溃了,你不就完了么。
2.系统复杂性提高:硬生生加个MQ进来,你怎么保证消息没有重复消费?怎么处理消息丢失的情况?怎么保证消息传递的顺序性?头大头大,问题一大堆,痛苦不已
3.一致性问题:A系统处理完了直接返回成功了,人都以为你这个请求就成功了;但是问题是,要是BCD三个系统那里,BD两个系统写库成功了,结果C系统写库失败了,咋整?你这数据就不一致了。
技术选型
MQ种类 | ActiveMQ | RabbitMQ | RocketMQ | Kafka |
优劣势总结 | 非常成熟,功能强大,在业内大量的公司以及项目中都有应用
偶尔会有较低概率丢失消息
而且现在社区以及国内应用都越来越少,官方社区现在对ActiveMQ 5.x维护越来越少,几个月才发布一个版本
而且确实主要是基于解耦和异步来用的,较少在大规模吞吐的场景中使用
| erlang语言开发,性能极其好,延时很低;
吞吐量到万级,MQ功能比较完备
而且开源提供的管理界面非常棒,用起来很好用
社区相对比较活跃,几乎每个月都发布几个版本分
在国内一些互联网公司近几年用rabbitmq也比较多一些
但是问题也是显而易见的,RabbitMQ确实吞吐量会低一些,这是因为他做的实现机制比较重。
而且erlang开发,国内有几个公司有实力做erlang源码级别的研究和定制?如果说你没这个实力的话,确实偶尔会有一些问题,你很难去看懂源码,你公司对这个东西的掌控很弱,基本职能依赖于开源社区的快速维护和修复bug。
而且rabbitmq集群动态扩展会很麻烦,不过这个我觉得还好。其实主要是erlang语言本身带来的问题。很难读源码,很难定制和掌控。 | 接口简单易用,而且毕竟在阿里大规模应用过,有阿里品牌保障
日处理消息上百亿之多,可以做到大规模吞吐,性能也非常好,分布式扩展也很方便,社区维护还可以,可靠性和可用性都是ok的,还可以支撑大规模的topic数量,支持复杂MQ业务场景
而且一个很大的优势在于,阿里出品都是java系的,我们可以自己阅读源码,定制自己公司的MQ,可以掌控
社区活跃度相对较为一般,不过也还可以,文档相对来说简单一些,然后接口这块不是按照标准JMS规范走的有些系统要迁移需要修改大量代码
还有就是阿里出台的技术,你得做好这个技术万一被抛弃,社区黄掉的风险,那如果你们公司有技术实力我觉得用RocketMQ挺好的 | kafka的特点其实很明显,就是仅仅提供较少的核心功能,但是提供超高的吞吐量,ms级的延迟,极高的可用性以及可靠性,而且分布式可以任意扩展
同时kafka最好是支撑较少的topic数量即可,保证其超高吞吐量
而且kafka唯一的一点劣势是有可能消息重复消费,那么对数据准确性会造成极其轻微的影响,在大数据领域中以及日志采集中,这点轻微影响可以忽略
这个特性天然适合大数据实时计算以及日志收集 |
综上所述,各种对比之后,
一般的业务系统要引入MQ,最早大家都用ActiveMQ,但是现在确实大家用的不多了,没经过大规模吞吐量场景的验证,社区也不是很活跃,所以大家还是算了吧,我个人不推荐用这个了;
后来大家开始用RabbitMQ,但是确实erlang语言阻止了大量的java工程师去深入研究和掌控他,对公司而言,几乎处于不可控的状态,但是确实人是开源的,比较稳定的支持,活跃度也高;
不过现在确实越来越多的公司,会去用RocketMQ,确实很不错,但是我提醒一下自己想好社区万一突然黄掉的风险,对自己公司技术实力有绝对自信的,我推荐用RocketMQ,否则回去老老实实用RabbitMQ吧,人是活跃开源社区,绝对不会黄
所以中小型公司,技术实力较为一般,技术挑战不是特别高,用RabbitMQ是不错的选择;大型公司,基础架构研发实力较强,用RocketMQ是很好的选择
如果是大数据领域的实时计算、日志采集等场景,用Kafka是业内标准的,绝对没问题,社区活跃度很高,绝对不会黄,何况几乎是全世界这个领域的事实性规范
如何保证消息队列的高可用
(1)RabbitMQ的高可用性
RabbitMQ是比较有代表性的,因为是基于主从做高可用性的,我们就以他为例子讲解第一种MQ的高可用性怎么实现。
rabbitmq有三种模式:单机模式,普通集群模式,镜像集群模式
1)单机模式
就是demo级别的,一般就是你本地启动了玩玩儿的,没人生产用单机模式
2)普通集群模式
意思就是在多台机器上启动多个rabbitmq实例,每个机器启动一个。但是你创建的queue,只会放在一个rabbtimq实例上,但是每个实例都同步queue的元数据。完了你消费的时候,实际上如果连接到了另外一个实例,那么那个实例会从queue所在实例上拉取数据过来。
这种方式确实很麻烦,也不怎么好,没做到所谓的分布式,就是个普通集群。因为这导致你要么消费者每次随机连接一个实例然后拉取数据,要么固定连接那个queue所在实例消费数据,前者有数据拉取的开销,后者导致单实例性能瓶颈。
而且如果那个放queue的实例宕机了,会导致接下来其他实例就无法从那个实例拉取,如果你开启了消息持久化,让rabbitmq落地存储消息的话,消息不一定会丢,得等这个实例恢复了,然后才可以继续从这个queue拉取数据。
所以这个事儿就比较尴尬了,这就没有什么所谓的高可用性可言了,这方案主要是提高吞吐量的,就是说让集群中多个节点来服务某个queue的读写操作。
3)镜像集群模式
这种模式,才是所谓的rabbitmq的高可用模式,跟普通集群模式不一样的是,你创建的queue,无论元数据还是queue里的消息都会存在于多个实例上,然后每次你写消息到queue的时候,都会自动把消息到多个实例的queue里进行消息同步。
这样的话,好处在于,你任何一个机器宕机了,没事儿,别的机器都可以用。坏处在于,第一,这个性能开销也太大了吧,消息同步所有机器,导致网络带宽压力和消耗很重!第二,这么玩儿,就没有扩展性可言了,如果某个queue负载很重,你加机器,新增的机器也包含了这个queue的所有数据,并没有办法线性扩展你的queue
那么怎么开启这个镜像集群模式呢?我这里简单说一下,避免面试人家问你你不知道,其实很简单rabbitmq有很好的管理控制台,就是在后台新增一个策略,这个策略是镜像集群模式的策略,指定的时候可以要求数据同步到所有节点的,也可以要求就同步到指定数量的节点,然后你再次创建queue的时候,应用这个策略,就会自动将数据同步到其他的节点上去了。
(2)kafka的高可用性
kafka一个最基本的架构认识:多个broker组成,每个broker是一个节点;你创建一个topic,这个topic可以划分为多个partition,每个partition可以存在于不同的broker上,每个partition就放一部分数据。
这就是天然的分布式消息队列,就是说一个topic的数据,是分散放在多个机器上的,每个机器就放一部分数据。
实际上rabbitmq之类的,并不是分布式消息队列,他就是传统的消息队列,只不过提供了一些集群、HA的机制而已,因为无论怎么玩儿,rabbitmq一个queue的数据都是放在一个节点里的,镜像集群下,也是每个节点都放这个queue的完整数据。
kafka 0.8以前,是没有HA机制的,就是任何一个broker宕机了,那个broker上的partition就废了,没法写也没法读,没有什么高可用性可言。
kafka 0.8以后,提供了HA机制,就是replica副本机制。每个partition的数据都会同步到吉他机器上,形成自己的多个replica副本。然后所有replica会选举一个leader出来,那么生产和消费都跟这个leader打交道,然后其他replica就是follower。写的时候,leader会负责把数据同步到所有follower上去,读的时候就直接读leader上数据即可。只能读写leader?很简单,要是你可以随意读写每个follower,那么就要care数据一致性的问题,系统复杂度太高,很容易出问题。kafka会均匀的将一个partition的所有replica分布在不同的机器上,这样才可以提高容错性。
因为如果某个broker宕机了,没事儿,那个broker上面的partition在其他机器上都有副本的,如果这上面有某个partition的leader,那么此时会重新选举一个新的leader出来,大家继续读写那个新的leader即可。这就有所谓的高可用性了。
写数据的时候,生产者就写leader,然后leader将数据落地写本地磁盘,接着其他follower自己主动从leader来pull数据。一旦所有follower同步好数据了,就会发送ack给leader,leader收到所有follower的ack之后,就会返回写成功的消息给生产者。(当然,这只是其中一种模式,还可以适当调整这个行为)
消费的时候,只会从leader去读,但是只有一个消息已经被所有follower都同步成功返回ack的时候,这个消息才会被消费者读到。
如何保证消息不被重复消费啊(如何保证消息消费时的幂等性)?
比如rabbitmq、rocketmq、kafka,都有可能会出现消费重复消费的问题,正常。因为这问题通常不是mq自己保证的,是给你保证的。然后我们挑一个kafka来举个例子,说说怎么重复消费吧,如下图所示:
kafka实际上有个offset的概念,就是每个消息写进去,都有一个offset,代表他的序号,然后consumer消费了数据之后,每隔一段时间,会把自己消费过的消息的offset提交一下,代表我已经消费过了,下次我要是重启啥的,你就让我继续从上次消费到的offset来继续消费吧。
但是凡事总有意外,比如我们之前生产经常遇到的,就是你有时候重启系统,看你怎么重启了,如果碰到点着急的,直接kill进程了,再重启。这会导致consumer有些消息处理了,但是没来得及提交offset,尴尬了。重启之后,少数消息会再次消费一次。
那所怎么保证消息队列消费的幂等性?
其实还是得结合业务来思考,我这里给几个思路:
(1)比如你拿个数据要写库,你先根据主键查一下,如果这数据都有了,你就别插入了,update一下好吧
(2)比如你是写redis,那没问题了,反正每次都是set,天然幂等性
(3)比如你不是上面两个场景,那做的稍微复杂一点,你需要让生产者发送每条数据的时候,里面加一个全局唯一的id,类似订单id之类的东西,然后你这里消费到了之后,先根据这个id去比如redis或者用个set查一下,之前消费过吗?如果没有消费过,你就处理,然后这个id写redis。如果消费过了,那你就别处理了,保证别重复处理相同的消息即可。
(4)还有比如基于数据库的唯一键来保证重复数据不会重复插入多条,我们之前线上系统就有这个问题,就是拿到数据的时候,每次重启可能会有重复,因为kafka消费者还没来得及提交offset,重复数据拿到了以后我们插入的时候,因为有唯一键约束了,所以重复数据只会插入报错,不会导致数据库中出现脏数据
如何保证MQ的消费是幂等性的,需要结合具体的业务来看
如何解决丢数据的问题?
1.生产者丢数据
生产者的消息没有投递到MQ中怎么办?从生产者弄丢数据这个角度来看,RabbitMQ提供transaction和confirm模式来确保生产者不丢消息。transaction机制就是说,发送消息前,开启事物(channel.txSelect()),然后发送消息,如果发送过程中出现什么异常,事物就会回滚(channel.txRollback()),如果发送成功则提交事物(channel.txCommit())。然而缺点就是吞吐量下降了。
生产上用confirm模式的居多。一旦channel进入confirm模式,所有在该信道上面发布的消息都将会被指派一个唯一的ID(从1开始),一旦消息被投递到所有匹配的队列之后,rabbitMQ就会发送一个Ack给生产者(包含消息的唯一ID),这就使得生产者知道消息已经正确到达目的队列了.如果rabiitMQ没能处理该消息,则会发送一个Nack消息给你,你可以进行重试操作。
2.消息队列丢数据
处理消息队列丢数据的情况,一般是开启持久化磁盘的配置。这个持久化配置可以和confirm机制配合使用,你可以在消息持久化磁盘后,再给生产者发送一个Ack信号。这样,如果消息持久化磁盘之前,rabbitMQ阵亡了,那么生产者收不到Ack信号,生产者会自动重发。
那么如何持久化呢,这里顺便说一下吧,其实也很容易,就下面两步
①、将queue的持久化标识durable设置为true,则代表是一个持久的队列
②、发送消息的时候将deliveryMode=2
这样设置以后,rabbitMQ就算挂了,重启后也能恢复数据。在消息还没有持久化到硬盘时,可能服务已经死掉,这种情况可以通过引入mirrored-queue即镜像队列,但也不能保证消息百分百不丢失(整个集群都挂掉)
3.消费者丢数据
启用手动确认模式可以解决这个问题
①自动确认模式,消费者挂掉,待ack的消息回归到队列中。消费者抛出异常,消息会不断的被重发,直到处理成功。不会丢失消息,即便服务挂掉,没有处理完成的消息会重回队列,但是异常会让消息不断重试。
②手动确认模式,如果消费者来不及处理就死掉时,没有响应ack时会重复发送一条信息给其他消费者;如果监听程序处理异常了,且未对异常进行捕获,会一直重复接收消息,然后一直抛异常;如果对异常进行了捕获,但是没有在finally里ack,也会一直重复发送消息(重试机制)。
③不确认模式,acknowledge="none" 不使用确认机制,只要消息发送完成会立即在队列移除,无论客户端异常还是断开,只要发送完就移除,不会重发。
如何保证消息的顺序性?
场景案例:
比如大数据team要做一个mysql binlog同步的系统,就需要同步一个mysql库过来,对公司的业务系统的数据做各种复杂的操作。在mysql里增删改一条数据,对应出来了增删改3条binlog,接着这三条binlog发送到MQ里面,到消费出来依次执行,起码得保证人家是按照顺序来的吧?不然本来是:增加、修改、删除;你楞是换了顺序给执行成删除、修改、增加,本来这个数据同步过来,应该最后这个数据被删除了;结果你搞错了这个顺序,最后这个数据保留下来了,数据同步就出错了。
先看看顺序会错乱的俩场景
(1)rabbitmq:一个queue,多个consumer,这不明显乱了。
如下图所示: 生产者顺序生产数据1,数据2,数据3三个数据。但由于网络延迟等原因,可能最后数据2最先被消费,然后是数据1和数据3,显然顺序乱了。
解决思路如下图所示:
拆分多个queue,每个queue一个consumer,就是多一些queue而已,确实是麻烦点;或者就一个queue但是对应一个consumer,然后这个consumer内部用内存队列做排队,然后分发给底层不同的worker来处理。
(2)kafka:一个topic,一个partition,一个consumer,内部多线程,这不也明显乱了
解决方案:
一个topic,一个partition,一个consumer,内部单线程消费,写N个内存queue,然后N个线程分别消费一个内存queue即可
假设有大量消息在mq里积压了几个小时了还没解决
1)先修复consumer的问题,确保其恢复消费速度,然后将现有cnosumer都停掉
2)新建一个topic,partition是原来的10倍,临时建立好原先10倍或者20倍的queue数量
3)然后写一个临时的分发数据的consumer程序,这个程序部署上去消费积压的数据,消费之后不做耗时的处理,直接均匀轮询写入临时建立好的10倍数量的queue
4)接着临时征用10倍的机器来部署consumer,每一批consumer消费一个临时queue的数据
5)这种做法相当于是临时将queue资源和consumer资源扩大10倍,以正常的10倍速度来消费数据
6)等快速消费完积压数据之后,得恢复原先部署架构,重新用原先的consumer机器来消费消息
假设你用的是rabbitmq,rabbitmq是可以设置过期时间的,就是TTL,如果消息在queue中积压超过一定的时间就会被rabbitmq给清理掉,数据就没了该怎么办
将丢失的那批数据,写个临时程序,一点一点的查出来,然后重新灌入mq里面去,把白天丢的数据给他补回来。也只能是这样了。
消息积压在mq里,那么如果你很长时间都没处理掉,此时导致mq都快写满了,咋办?
临时写程序,接入数据来消费,消费一个丢弃一个,都不要了,快速消费掉所有的消息。然后再写程序补数据。