Apache Spark简单构建一个应用程序
简单的构建一个Apache Spark应用程序
开发环境准备:
运行在Windows
jdk1.8和maven环境
pom如下:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>SparkDemo</groupId>
<artifactId>SparkDemo</artifactId>
<version>1.0-SNAPSHOT</version>
<inceptionYear>2008</inceptionYear>
<properties>
<scala.version>2.11.1</scala.version>
</properties>
<repositories>
<repository>
<id>scala-tools.org</id>
<name>Scala-Tools Maven2 Repository</name>
<url>http://scala-tools.org/repo-releases</url>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>scala-tools.org</id>
<name>Scala-Tools Maven2 Repository</name>
<url>http://scala-tools.org/repo-releases</url>
</pluginRepository>
</pluginRepositories>
<dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.2.0</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.4</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.specs</groupId>
<artifactId>specs</artifactId>
<version>1.2.5</version>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<sourceDirectory>src/main/scala</sourceDirectory>
<testSourceDirectory>src/test/scala</testSourceDirectory>
<plugins>
<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
<configuration>
<scalaVersion>${scala.version}</scalaVersion>
<args>
<arg>-target:jvm-1.5</arg>
</args>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-eclipse-plugin</artifactId>
<configuration>
<downloadSources>true</downloadSources>
<buildcommands>
<buildcommand>ch.epfl.lamp.sdt.core.scalabuilder</buildcommand>
</buildcommands>
<additionalProjectnatures>
<projectnature>ch.epfl.lamp.sdt.core.scalanature</projectnature>
</additionalProjectnatures>
<classpathContainers>
<classpathContainer>org.eclipse.jdt.launching.JRE_CONTAINER</classpathContainer>
<classpathContainer>ch.epfl.lamp.sdt.launching.SCALA_CONTAINER</classpathContainer>
</classpathContainers>
</configuration>
</plugin>
</plugins>
</build>
<reporting>
<plugins>
<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<configuration>
<scalaVersion>${scala.version}</scalaVersion>
</configuration>
</plugin>
</plugins>
</reporting>
</project>
工作目录:
编写Spark程序:
创建WordCount程序:
package SparkDemo
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD
/**
* @Author: luomo
* @CreateTime: 2019/10/24
* @Description:WordCount
*/
object WordCount {
def main(args: Array[String]): Unit = {
//配置文件
val conf = new SparkConf().
setAppName("wordcount") // 运行时候的作业名称
.setMaster("local")
//上下文 拿着Conf信息创建出来 写spark应用程序的对象 通往集群的入口
val sc = new SparkContext(conf)
//传入文件对象 返回RDD集合
val input = sc.textFile("E:///test.txt")
//对文件行数据 按照空格切割 返回RDD集合 得到每个单词
val lines = input.flatMap(line => line.split(" "))
//统计单词数量 计数 得到RDD集合 按照相同的Key先分组,之后再对组内的Value进行操作
val count = lines.map(word => (word, 1)).reduceByKey{case (x, y) => x + y}
//将结果遍历打印到控制台
count.foreach(x =>{
println(x)
})
//将结果输出到文件中
val output = count.saveAsTextFile("E:///wordCount")
//关闭流 在内存中释放这个spark对象
//sc.stop()
}
}
运行程序如图: