Spark-分组TOPN算法

该数据集都为:“http://bigdata.edu360.cn/laozhou” 这个样子,需求是找到每个学科下最受欢迎的老师
方法一:

/**
  * 数据放到scala 集合里面进行操作
  */
object GroupFavTeacher_1 {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("FavTeacher").setMaster("local")
    val sc = new SparkContext(conf)
    //指定以后从哪里读取数据
    val lines = sc.textFile(args(0))
    //整理数据
    val subject_teacherAndOne = lines.map(line => {
      //val line = "http://bigdata.edu360.cn/laoyu"
      val conSubject = line.split("/")(2)
      val subject =conSubject.split("[.]")(0)
      val teacher = line.split("/")(3)
      ((subject, teacher),1)
    })
    //聚合,将学科和老师联合当做key
    val reduced: RDD[((String,String), Int)] = subject_teacherAndOne.reduceByKey(_+_)
    //分组排序(按学科进行分组)
    val grouped: RDD[(String, Iterable[((String, String), Int)])] = reduced.groupBy(_._1._1)
    //经过分组后,一个分区内可能有多个学科的数据,一个学科就是一个迭代器
    //将每一个组拿出来进行操作v
    //为什么可以调用sacla的sortby方法呢?因为一个学科的数据已经在一个scala集合里面了
    val sorted = grouped.mapValues(_.toList.sortBy(_._2).reverse.take(3))
    val resulted = sorted.collect()
    //收集
    println(resulted.toBuffer)
    sc.stop()
  }
}

  • 方法二:
/**
  * 先过滤再统计计算
  */
object GroupFavTeacher_2 {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("GroupFavTeacher_2").setMaster("local")
    val sc = new SparkContext(conf)
    //val topN = args(1).toInt
    val subjects = Array("bigdata", "javaee", "php")
    //指定以后从哪里读取数据
    val lines = sc.textFile(args(0))
    //整理数据
    val subject_teacherAndOne = lines.map(line => {
      //val line = "http://bigdata.edu360.cn/laozhang"
      val conSubject = line.split("/")(2)
      val subject =conSubject.split("[.]")(0)
      val teacher = line.split("/")(3)
      ((subject, teacher),1)
    })
    //聚合,将学科和老师联合当做key
    val reduced: RDD[((String,String), Int)] = subject_teacherAndOne.reduceByKey(_+_)
    //分组排序(按学科进行分组)
    val grouped: RDD[(String, Iterable[((String, String), Int)])] = reduced.groupBy(_._1._1)

    //scala的集合排序是在内存中进行的,但是内存有可能不够用
    //可以调用RDD的sortby方法,内存+磁盘进行排序
    for(sb <- subjects) {
      //该RDD中对应的数据仅有一个学科的数据(因为过滤过了)
      val filted = grouped.filter(_._1 == sb)
      //现在调用的是RDD的sortBy方法,(take是一个action,会触发任务提交)
      val filtedResulted = filted.sortBy(_._2, false).take(3)
      println(filtedResulted.toBuffer)
    }
    sc.stop()
  }
}
  • 方法三:
/**
*自定义分区器(k,v)
*
/
object GroupFavTeacher3 {

  def main(args: Array[String]): Unit = {

    val topN = args(1).toInt

    val conf = new SparkConf().setAppName("GroupFavTeacher2").setMaster("local[4]")
    val sc = new SparkContext(conf)

    //指定以后从哪里读取数据
    val lines: RDD[String] = sc.textFile(args(0))
    //整理数据
    val sbjectTeacherAndOne: RDD[((String, String), Int)] = lines.map(line => {
      val index = line.lastIndexOf("/")
      val teacher = line.substring(index + 1)
      val httpHost = line.substring(0, index)
      val subject = new URL(httpHost).getHost.split("[.]")(0)
      ((subject, teacher), 1)
    })

    //聚合,将学科和老师联合当做key
    val reduced: RDD[((String, String), Int)] = sbjectTeacherAndOne.reduceByKey(_+_)

    //计算有多少学科
    val subjects: Array[String] = reduced.map(_._1._1).distinct().collect()

    //自定义一个分区器,并且按照指定的分区器进行分区
    val sbPatitioner = new SubjectParitioner(subjects);

    //partitionBy按照指定的分区规则进行分区
    //调用partitionBy时RDD的Key是(String, String)
    val partitioned: RDD[((String, String), Int)] = reduced.partitionBy(sbPatitioner)

    //一次拿出一个分区(可以操作一个分区中的数据了)
    val sorted: RDD[((String, String), Int)] = partitioned.mapPartitions(it => {
      //将迭代器转换成list,然后排序,在转换成迭代器返回
      it.toList.sortBy(_._2).reverse.take(topN).iterator
    })

    //
    val r: Array[((String, String), Int)] = sorted.collect()
    println(r.toBuffer)
    sc.stop()
  }
}

//自定义分区器
//思想就是把每一种给一个编号,每一个编号下的分区都是该学科的数据
class SubjectParitioner(sbs: Array[String]) extends Partitioner {

  //相当于主构造器(new的时候会执行一次)
  //用于存放规则的一个map
  val rules = new mutable.HashMap[String, Int]()
  var i = 0
  for(sb <- sbs) {
    //rules(sb) = i
    rules.put(sb, i)
    i += 1
  }

  //返回分区的数量(下一个RDD有多少分区)
  override def numPartitions: Int = sbs.length

  //根据传入的key计算分区标号
  //key是一个元组(String, String)
  override def getPartition(key: Any): Int = {
    //获取学科名称
    val subject = key.asInstanceOf[(String, String)]._1
    //根据规则计算分区编号
    rules(subject)
  }
}

全部评论

相关推荐

头像
11-09 12:17
清华大学 C++
out11Man:小丑罢了,不用理会
点赞 评论 收藏
分享
10-21 23:48
蚌埠坦克学院
csgq:可能没hc了 昨天一面完秒挂
点赞 评论 收藏
分享
点赞 收藏 评论
分享
牛客网
牛客企业服务